通过便捷的液相剥离技术调节二维层状生物氧化物的表面化学性质,从而增强光电催化氧进化能力

Mengjiao Wang, Jaime Gallego, Micaela Pozzati, Teresa Gatti
{"title":"通过便捷的液相剥离技术调节二维层状生物氧化物的表面化学性质,从而增强光电催化氧进化能力","authors":"Mengjiao Wang, Jaime Gallego, Micaela Pozzati, Teresa Gatti","doi":"10.1002/sstr.202400275","DOIUrl":null,"url":null,"abstract":"BiOI is a promising photoelectrocatalyst for oxidation reactions. However, the limited photoelectrocatalytic (PEC) activity necessitates the development of new strategies to modify its surface chemistry and thus enhance functional properties. Herein, we present a simple method to increase photocurrent in a BiOI-based photoanode by exfoliating microspheres of the oxyhalide produced through hydrothermal synthesis. Following exfoliation in isopropanol, the resulting layered BiOI-based colloid contains a greater variety of species, including Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>, I<sub>3</sub><sup>−</sup>, IO<sub>3</sub><sup>−</sup>, Bi<sup>5+</sup>, and hydroxides, compared to the original BiOI. These additional species do not directly enhance the PEC oxygen evolution reaction (OER) performance. Instead, they are consumed or converted during PEC OER, resulting in more active sites on the photoelectrode and reduced resistance, which ultimately improves the water oxidation performance of the exfoliated BiOI. Over long-term chronoamperometry, the exfoliated BiOI demonstrates a photocurrent twice as high as that of the BiOI microspheres. Analysis of the species after PEC OER reveals that the combination of IO<sub>3</sub><sup>−</sup>, Bi<sup>5+</sup>, and I<sub>3</sub><sup>−</sup> species on the BiOI is beneficial for charge transfer, thus enhancing the intrinsic PEC properties of the BiOI. This study offers new insights into the role of surface chemistry in determining PEC performance, aiding the optimization of 2D materials-based photoelectrocatalysts.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Surface Chemistry in 2D Layered BiOI by Facile Liquid-Phase Exfoliation for Enhanced Photoelectrocatalytic Oxygen Evolution\",\"authors\":\"Mengjiao Wang, Jaime Gallego, Micaela Pozzati, Teresa Gatti\",\"doi\":\"10.1002/sstr.202400275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BiOI is a promising photoelectrocatalyst for oxidation reactions. However, the limited photoelectrocatalytic (PEC) activity necessitates the development of new strategies to modify its surface chemistry and thus enhance functional properties. Herein, we present a simple method to increase photocurrent in a BiOI-based photoanode by exfoliating microspheres of the oxyhalide produced through hydrothermal synthesis. Following exfoliation in isopropanol, the resulting layered BiOI-based colloid contains a greater variety of species, including Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>, I<sub>3</sub><sup>−</sup>, IO<sub>3</sub><sup>−</sup>, Bi<sup>5+</sup>, and hydroxides, compared to the original BiOI. These additional species do not directly enhance the PEC oxygen evolution reaction (OER) performance. Instead, they are consumed or converted during PEC OER, resulting in more active sites on the photoelectrode and reduced resistance, which ultimately improves the water oxidation performance of the exfoliated BiOI. Over long-term chronoamperometry, the exfoliated BiOI demonstrates a photocurrent twice as high as that of the BiOI microspheres. Analysis of the species after PEC OER reveals that the combination of IO<sub>3</sub><sup>−</sup>, Bi<sup>5+</sup>, and I<sub>3</sub><sup>−</sup> species on the BiOI is beneficial for charge transfer, thus enhancing the intrinsic PEC properties of the BiOI. This study offers new insights into the role of surface chemistry in determining PEC performance, aiding the optimization of 2D materials-based photoelectrocatalysts.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

BiOI 是一种用于氧化反应的前景广阔的光电催化剂。然而,由于其光电催化(PEC)活性有限,因此有必要开发新的策略来改变其表面化学性质,从而增强其功能特性。在此,我们提出了一种简单的方法,通过剥离水热合成产生的氧卤化物微球,提高基于 BiOI 的光阳极的光电流。在异丙醇中剥离后,与原始 BiOI 相比,生成的层状 BiOI 基胶体含有更多种类,包括 Bi2O2CO3、I3-、IO3-、Bi5+ 和氢氧化物。这些额外的物种不会直接提高 PEC 氧进化反应(OER)的性能。相反,它们会在 PEC 氧进化反应过程中被消耗或转化,从而在光电极上形成更多的活性位点并降低电阻,最终提高剥离的 BiOI 的水氧化性能。在长期的计时器测量中,剥离的生物氧化物的光电流是生物氧化物微球的两倍。对 PEC OER 后的物种分析表明,BiOI 上 IO3-、Bi5+ 和 I3- 物种的组合有利于电荷转移,从而增强了 BiOI 的内在 PEC 特性。这项研究为了解表面化学在决定 PEC 性能方面的作用提供了新的视角,有助于优化基于二维材料的光电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning Surface Chemistry in 2D Layered BiOI by Facile Liquid-Phase Exfoliation for Enhanced Photoelectrocatalytic Oxygen Evolution
BiOI is a promising photoelectrocatalyst for oxidation reactions. However, the limited photoelectrocatalytic (PEC) activity necessitates the development of new strategies to modify its surface chemistry and thus enhance functional properties. Herein, we present a simple method to increase photocurrent in a BiOI-based photoanode by exfoliating microspheres of the oxyhalide produced through hydrothermal synthesis. Following exfoliation in isopropanol, the resulting layered BiOI-based colloid contains a greater variety of species, including Bi2O2CO3, I3, IO3, Bi5+, and hydroxides, compared to the original BiOI. These additional species do not directly enhance the PEC oxygen evolution reaction (OER) performance. Instead, they are consumed or converted during PEC OER, resulting in more active sites on the photoelectrode and reduced resistance, which ultimately improves the water oxidation performance of the exfoliated BiOI. Over long-term chronoamperometry, the exfoliated BiOI demonstrates a photocurrent twice as high as that of the BiOI microspheres. Analysis of the species after PEC OER reveals that the combination of IO3, Bi5+, and I3 species on the BiOI is beneficial for charge transfer, thus enhancing the intrinsic PEC properties of the BiOI. This study offers new insights into the role of surface chemistry in determining PEC performance, aiding the optimization of 2D materials-based photoelectrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis Pressure-Enhanced Superconductivity and Structural Phase Transition in Layered Sn4P3 Unveiling Inequality of Atoms in Ultrasmall Pt Clusters: Oxygen Adsorption Limited to the Uppermost Atomic Layer Spatially Selective Ultraprecision Polishing and Cleaning by Collective Behavior of Micro Spinbots Inkjet-Printed Flexible and Transparent Ti3C2Tx/TiO2 Composite Films: A Strategy for Photoelectrically Controllable Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1