{"title":"结合双目视觉技术和改进的物体检测技术的电力线避障安全检测算法","authors":"Gao Liu, Duanjiao Li, Wenxing Sun, Zhuojun Xie, Ruchao Liao, Jiangbo Feng","doi":"10.1186/s42162-024-00378-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a framework of obstacle avoidance algorithm applied to power line damage safety distance detection is constructed, and its overall architecture and key processes are described in detail. The system design covers three core modules: visual data acquisition and preliminary processing, accurate target recognition and distance measurement, and system error analysis and correction. In the visual data processing chain, we deeply analyze every step from image acquisition to preprocessing to feature extraction, aiming to enhance the adaptability of applications to complex scenes. The target recognition and distance estimation part integrates advanced technology of deep learning to improve the reliability of recognition accuracy and distance estimation. In addition, many common error sources, such as system bias, parallax discontinuity, fluctuation of illumination conditions, etc., are discussed in depth, and corresponding correction strategies are proposed to ensure the accuracy and stability of the system, which provides powerful technical support for achieving efficient and accurate safety monitoring. Specifically, by carefully adjusting the learning rate, convolution kernel size, batch size, pooling layer type, and number of hidden layer nodes, we succeeded in improving the overall accuracy from the initial average of 92.4–95%, and the error rate decreased accordingly.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00378-4.pdf","citationCount":"0","resultStr":"{\"title\":\"An obstacle avoidance safety detection algorithm for power lines combining binocular vision technology and improved object detection\",\"authors\":\"Gao Liu, Duanjiao Li, Wenxing Sun, Zhuojun Xie, Ruchao Liao, Jiangbo Feng\",\"doi\":\"10.1186/s42162-024-00378-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a framework of obstacle avoidance algorithm applied to power line damage safety distance detection is constructed, and its overall architecture and key processes are described in detail. The system design covers three core modules: visual data acquisition and preliminary processing, accurate target recognition and distance measurement, and system error analysis and correction. In the visual data processing chain, we deeply analyze every step from image acquisition to preprocessing to feature extraction, aiming to enhance the adaptability of applications to complex scenes. The target recognition and distance estimation part integrates advanced technology of deep learning to improve the reliability of recognition accuracy and distance estimation. In addition, many common error sources, such as system bias, parallax discontinuity, fluctuation of illumination conditions, etc., are discussed in depth, and corresponding correction strategies are proposed to ensure the accuracy and stability of the system, which provides powerful technical support for achieving efficient and accurate safety monitoring. Specifically, by carefully adjusting the learning rate, convolution kernel size, batch size, pooling layer type, and number of hidden layer nodes, we succeeded in improving the overall accuracy from the initial average of 92.4–95%, and the error rate decreased accordingly.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s42162-024-00378-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00378-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00378-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
An obstacle avoidance safety detection algorithm for power lines combining binocular vision technology and improved object detection
In this paper, a framework of obstacle avoidance algorithm applied to power line damage safety distance detection is constructed, and its overall architecture and key processes are described in detail. The system design covers three core modules: visual data acquisition and preliminary processing, accurate target recognition and distance measurement, and system error analysis and correction. In the visual data processing chain, we deeply analyze every step from image acquisition to preprocessing to feature extraction, aiming to enhance the adaptability of applications to complex scenes. The target recognition and distance estimation part integrates advanced technology of deep learning to improve the reliability of recognition accuracy and distance estimation. In addition, many common error sources, such as system bias, parallax discontinuity, fluctuation of illumination conditions, etc., are discussed in depth, and corresponding correction strategies are proposed to ensure the accuracy and stability of the system, which provides powerful technical support for achieving efficient and accurate safety monitoring. Specifically, by carefully adjusting the learning rate, convolution kernel size, batch size, pooling layer type, and number of hidden layer nodes, we succeeded in improving the overall accuracy from the initial average of 92.4–95%, and the error rate decreased accordingly.