纳米镍钴针的双金属位点置换作为促进水分离的双功能电催化剂

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-08-31 DOI:10.1007/s12274-024-6952-3
Ya Gao, Yuhui Qiao, Xuanrong Li, Chengyu Huang, Jing Zhang, Yirong Wang, Xingli Zou, Zhonghong Xia, Xinxin Yang, Xionggang Lu, Yufeng Zhao
{"title":"纳米镍钴针的双金属位点置换作为促进水分离的双功能电催化剂","authors":"Ya Gao, Yuhui Qiao, Xuanrong Li, Chengyu Huang, Jing Zhang, Yirong Wang, Xingli Zou, Zhonghong Xia, Xinxin Yang, Xionggang Lu, Yufeng Zhao","doi":"10.1007/s12274-024-6952-3","DOIUrl":null,"url":null,"abstract":"<p>The bimetallic nickel-cobalt phosphide (NiCoP) has been confirmed as an efficient electrocatalyst in water splitting. But little attention is paid to the selectivity and affinity of metal sites on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a trace-Zn-doping (2.18 wt.%) NiCoP (Zn-NiCoP) whereby the nanoparticles self-aggregated to form elongated nanoneedles. We discover that both Co and Ni sites can be replaced by Zn. The Co substitution improves HER, while the Ni substitution dramatically reduces the energy barrier of the rate-determining step (*O → *OOH). The negative shift of d-band centers after Zn doping ameliorates the intermediate desorption. Therefore, Zn-NiCoP demonstrates superior electrocatalytic activity with overpotentials of 48 and 240 mV for HER and OER at 10 and 50 mA·cm<sup>−2</sup>, respectively. The cell voltage with Zn-NiCoP as both anode and cathode in water splitting was as low as 1.35 V at 10 mA·cm<sup>−2</sup>.</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimetallic site substitution of NiCoP nanoneedles as bifunctional electrocatalyst for boosted water splitting\",\"authors\":\"Ya Gao, Yuhui Qiao, Xuanrong Li, Chengyu Huang, Jing Zhang, Yirong Wang, Xingli Zou, Zhonghong Xia, Xinxin Yang, Xionggang Lu, Yufeng Zhao\",\"doi\":\"10.1007/s12274-024-6952-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The bimetallic nickel-cobalt phosphide (NiCoP) has been confirmed as an efficient electrocatalyst in water splitting. But little attention is paid to the selectivity and affinity of metal sites on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a trace-Zn-doping (2.18 wt.%) NiCoP (Zn-NiCoP) whereby the nanoparticles self-aggregated to form elongated nanoneedles. We discover that both Co and Ni sites can be replaced by Zn. The Co substitution improves HER, while the Ni substitution dramatically reduces the energy barrier of the rate-determining step (*O → *OOH). The negative shift of d-band centers after Zn doping ameliorates the intermediate desorption. Therefore, Zn-NiCoP demonstrates superior electrocatalytic activity with overpotentials of 48 and 240 mV for HER and OER at 10 and 50 mA·cm<sup>−2</sup>, respectively. The cell voltage with Zn-NiCoP as both anode and cathode in water splitting was as low as 1.35 V at 10 mA·cm<sup>−2</sup>.</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6952-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6952-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

双金属磷化镍钴(NiCoP)已被证实是一种高效的水分离电催化剂。但人们很少关注金属位点在氢进化反应(HER)和氧进化反应(OER)中的选择性和亲和性。在此,我们报告了一种痕量锌掺杂(2.18 wt.%)的镍钴锰酸锂(Zn-NiCoP),其纳米颗粒自聚集形成细长的纳米针状。我们发现,钴和镍的位点都可以被锌取代。钴的取代提高了 HER,而镍的取代则大大降低了决定速率步骤(*O → *OOH)的能垒。掺杂 Zn 后 d 带中心的负移改善了中间解吸。因此,Zn-NiCoP 显示出卓越的电催化活性,在 10 mA-cm-2 和 50 mA-cm-2 条件下,HER 和 OER 的过电位分别为 48 和 240 mV。在 10 mA-cm-2 条件下,以 Zn-NiCoP 同时作为阳极和阴极进行水分离的电池电压低至 1.35 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bimetallic site substitution of NiCoP nanoneedles as bifunctional electrocatalyst for boosted water splitting

The bimetallic nickel-cobalt phosphide (NiCoP) has been confirmed as an efficient electrocatalyst in water splitting. But little attention is paid to the selectivity and affinity of metal sites on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a trace-Zn-doping (2.18 wt.%) NiCoP (Zn-NiCoP) whereby the nanoparticles self-aggregated to form elongated nanoneedles. We discover that both Co and Ni sites can be replaced by Zn. The Co substitution improves HER, while the Ni substitution dramatically reduces the energy barrier of the rate-determining step (*O → *OOH). The negative shift of d-band centers after Zn doping ameliorates the intermediate desorption. Therefore, Zn-NiCoP demonstrates superior electrocatalytic activity with overpotentials of 48 and 240 mV for HER and OER at 10 and 50 mA·cm−2, respectively. The cell voltage with Zn-NiCoP as both anode and cathode in water splitting was as low as 1.35 V at 10 mA·cm−2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays Colloidal II–VI nanoplatelets for optoelectronic devices: Progress and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1