利用纳米级结晶域实现与关节软骨轴承润滑相匹配的双物理网络 PVA 水凝胶

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-09-07 DOI:10.1007/s12274-024-6968-8
Danli Hu, Desheng Liu, Yue Hu, Yixian Wang, Yaozhong Lu, Changcheng Bai, Khan Rajib Hossain, Pan Jiang, Xiaolong Wang
{"title":"利用纳米级结晶域实现与关节软骨轴承润滑相匹配的双物理网络 PVA 水凝胶","authors":"Danli Hu,&nbsp;Desheng Liu,&nbsp;Yue Hu,&nbsp;Yixian Wang,&nbsp;Yaozhong Lu,&nbsp;Changcheng Bai,&nbsp;Khan Rajib Hossain,&nbsp;Pan Jiang,&nbsp;Xiaolong Wang","doi":"10.1007/s12274-024-6968-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogel, as one of potential soft materials for articular cartilage, has encountered pressing obstacles, such as insufficient mechanical properties, poor lubrication, and easy to wear. To tackle these, we propose a strong yet slippery polyvinyl alcohol/chitosan (PVA/CS) hydrogel with dual-physically crosslinked networks by harnessing freeze-thawing, salting-out, annealing, and rehydration. High mechanical properties of PVA/CS hydrogel can be readily regulated by adjusting proportion of PVA/CS and annealing temperature. The optimized hydrogel exhibits high mechanical properties with tensile strength of ∼ 19 MPa at strain of 550%, compression strength of ∼ 11 MPa at small strain of 39%, and outstanding toughness and antifatigue owing to the robust physical interactions, including hydrogen bonds, crystallization, and ionic coordination. Moreover, the equilibrium hydrogel shows low friction coefficient of ∼ 0.05 against Al<sub>2</sub>O<sub>3</sub> ball under the condition of 30 N, 1 Hz, with water as the tribological medium, which is close to the lubrication performance of native cartilage. And meanwhile, the proposed cartilage-like slippery hydrogel displays stable long-term lubrication performance for 1 × 10<sup>5</sup> reciprocating cycles without destructive wear and structure damage. It is therefore believed that the biocompatible cartilage-like slippery hydrogel opens innovative scenarios for developing cartilage-mimicking water-lubricated coating and biomedical implants with satisfactory load-bearing and lubrication performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9784 - 9795"},"PeriodicalIF":9.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains\",\"authors\":\"Danli Hu,&nbsp;Desheng Liu,&nbsp;Yue Hu,&nbsp;Yixian Wang,&nbsp;Yaozhong Lu,&nbsp;Changcheng Bai,&nbsp;Khan Rajib Hossain,&nbsp;Pan Jiang,&nbsp;Xiaolong Wang\",\"doi\":\"10.1007/s12274-024-6968-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogel, as one of potential soft materials for articular cartilage, has encountered pressing obstacles, such as insufficient mechanical properties, poor lubrication, and easy to wear. To tackle these, we propose a strong yet slippery polyvinyl alcohol/chitosan (PVA/CS) hydrogel with dual-physically crosslinked networks by harnessing freeze-thawing, salting-out, annealing, and rehydration. High mechanical properties of PVA/CS hydrogel can be readily regulated by adjusting proportion of PVA/CS and annealing temperature. The optimized hydrogel exhibits high mechanical properties with tensile strength of ∼ 19 MPa at strain of 550%, compression strength of ∼ 11 MPa at small strain of 39%, and outstanding toughness and antifatigue owing to the robust physical interactions, including hydrogen bonds, crystallization, and ionic coordination. Moreover, the equilibrium hydrogel shows low friction coefficient of ∼ 0.05 against Al<sub>2</sub>O<sub>3</sub> ball under the condition of 30 N, 1 Hz, with water as the tribological medium, which is close to the lubrication performance of native cartilage. And meanwhile, the proposed cartilage-like slippery hydrogel displays stable long-term lubrication performance for 1 × 10<sup>5</sup> reciprocating cycles without destructive wear and structure damage. It is therefore believed that the biocompatible cartilage-like slippery hydrogel opens innovative scenarios for developing cartilage-mimicking water-lubricated coating and biomedical implants with satisfactory load-bearing and lubrication performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9784 - 9795\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6968-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6968-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶作为关节软骨的潜在软材料之一,一直面临着机械性能不足、润滑性差、易磨损等亟待解决的问题。为了解决这些问题,我们利用冻融、盐析、退火和再水化技术,提出了一种具有双重物理交联网络的强韧而滑爽的聚乙烯醇/壳聚糖(PVA/CS)水凝胶。通过调节 PVA/CS 的比例和退火温度,可轻松调节 PVA/CS 水凝胶的高机械性能。优化后的水凝胶具有很高的力学性能,在应变为 550% 时的拉伸强度为 19 兆帕;在小应变为 39% 时的压缩强度为 11 兆帕;由于氢键、结晶和离子配位等强物理相互作用,水凝胶具有出色的韧性和抗疲劳性。此外,以水为摩擦介质,在 30 N、1 Hz 的条件下,平衡水凝胶与 Al2O3 球的摩擦系数低至 0.05 ∼,接近原生软骨的润滑性能。同时,所提出的软骨样滑溜水凝胶在 1 × 105 个往复循环中显示出稳定的长期润滑性能,没有破坏性磨损和结构损伤。因此,这种生物相容性软骨样滑溜水凝胶为开发具有令人满意的承重和润滑性能的仿软骨水润滑涂层和生物医学植入物开辟了创新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains

Hydrogel, as one of potential soft materials for articular cartilage, has encountered pressing obstacles, such as insufficient mechanical properties, poor lubrication, and easy to wear. To tackle these, we propose a strong yet slippery polyvinyl alcohol/chitosan (PVA/CS) hydrogel with dual-physically crosslinked networks by harnessing freeze-thawing, salting-out, annealing, and rehydration. High mechanical properties of PVA/CS hydrogel can be readily regulated by adjusting proportion of PVA/CS and annealing temperature. The optimized hydrogel exhibits high mechanical properties with tensile strength of ∼ 19 MPa at strain of 550%, compression strength of ∼ 11 MPa at small strain of 39%, and outstanding toughness and antifatigue owing to the robust physical interactions, including hydrogen bonds, crystallization, and ionic coordination. Moreover, the equilibrium hydrogel shows low friction coefficient of ∼ 0.05 against Al2O3 ball under the condition of 30 N, 1 Hz, with water as the tribological medium, which is close to the lubrication performance of native cartilage. And meanwhile, the proposed cartilage-like slippery hydrogel displays stable long-term lubrication performance for 1 × 105 reciprocating cycles without destructive wear and structure damage. It is therefore believed that the biocompatible cartilage-like slippery hydrogel opens innovative scenarios for developing cartilage-mimicking water-lubricated coating and biomedical implants with satisfactory load-bearing and lubrication performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1