静磁层条件下蛇纹石发射载波频率的变化

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geomagnetism and Aeronomy Pub Date : 2024-08-13 DOI:10.1134/S0016793224600292
N. A. Kurazhkovskaya, B. I. Klain, A. Yu. Kurazhkovskii
{"title":"静磁层条件下蛇纹石发射载波频率的变化","authors":"N. A. Kurazhkovskaya,&nbsp;B. I. Klain,&nbsp;A. Yu. Kurazhkovskii","doi":"10.1134/S0016793224600292","DOIUrl":null,"url":null,"abstract":"<p>The article studies variation in the serpentine emission carrier frequency <i>f</i><sub><i>SE</i></sub> observed in the 0.1–5.0 Hz frequency range under quiet magnetosphere conditions (<i>Kp</i> ~ 0–2). The data of magnetic field recording at the Antarctic Vostok Observatory (corrected geomagnetic coordinates Φ′ = −85.41°, Λ′ = 69.01°) for 1970‒1972 were used in the analysis. Using the dynamic spectra of ULF emission, we analyzed 90 cases of serpentine emission observation, the center carrier frequency of which gradually decreased (several times, sometimes to 0), then increased almost to the initial level in time intervals significantly exceeding the maximum modulation period (1 h). In this case, typical modulation of the emission carrier frequency with periods of 1–60 min persisted. The most likely time of observation of the detected effect was in the hours before midnight. It is shown that a decrease and subsequent increase in <i>f</i><sub><i>SE</i></sub> were observed versus weak geomagnetic activity and relative stability of the dominant number of solar wind and IMF parameters. Taking into account the discovered synchronous coincidence of the behavior of <i>f</i><sub><i>SE</i></sub> and dynamics of the <i>AE</i>-index, as well as observation of the effect of a decrease in the carrier frequency near local midnight, it is suggested that serpentine emission is most likely excited near the polar cusp, then penetrates the polar cap region. The behavior of <i>f</i><sub><i>SE</i></sub> observed over long time intervals is presumably governed by the plasma parameter β and ratio of the proton density to the helium ion density <i>Np</i>/<i>Na</i>, the dynamics of which are similar to the average variation in <i>f</i><sub><i>SE</i></sub>.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"468 - 475"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in the Serpentine Emission Carrier Frequency under Quiet Magnetosphere Conditions\",\"authors\":\"N. A. Kurazhkovskaya,&nbsp;B. I. Klain,&nbsp;A. Yu. Kurazhkovskii\",\"doi\":\"10.1134/S0016793224600292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article studies variation in the serpentine emission carrier frequency <i>f</i><sub><i>SE</i></sub> observed in the 0.1–5.0 Hz frequency range under quiet magnetosphere conditions (<i>Kp</i> ~ 0–2). The data of magnetic field recording at the Antarctic Vostok Observatory (corrected geomagnetic coordinates Φ′ = −85.41°, Λ′ = 69.01°) for 1970‒1972 were used in the analysis. Using the dynamic spectra of ULF emission, we analyzed 90 cases of serpentine emission observation, the center carrier frequency of which gradually decreased (several times, sometimes to 0), then increased almost to the initial level in time intervals significantly exceeding the maximum modulation period (1 h). In this case, typical modulation of the emission carrier frequency with periods of 1–60 min persisted. The most likely time of observation of the detected effect was in the hours before midnight. It is shown that a decrease and subsequent increase in <i>f</i><sub><i>SE</i></sub> were observed versus weak geomagnetic activity and relative stability of the dominant number of solar wind and IMF parameters. Taking into account the discovered synchronous coincidence of the behavior of <i>f</i><sub><i>SE</i></sub> and dynamics of the <i>AE</i>-index, as well as observation of the effect of a decrease in the carrier frequency near local midnight, it is suggested that serpentine emission is most likely excited near the polar cusp, then penetrates the polar cap region. The behavior of <i>f</i><sub><i>SE</i></sub> observed over long time intervals is presumably governed by the plasma parameter β and ratio of the proton density to the helium ion density <i>Np</i>/<i>Na</i>, the dynamics of which are similar to the average variation in <i>f</i><sub><i>SE</i></sub>.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 4\",\"pages\":\"468 - 475\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600292\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600292","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 文章研究了在安静磁层条件下(Kp ~ 0-2)在 0.1-5.0 Hz 频率范围内观测到的蛇纹石发射载波频率 fSE 的变化。分析采用了南极沃斯托克观测站 1970-1972 年的磁场记录数据(校正地磁坐标 Φ′ = -85.41°, Λ′ = 69.01°)。利用超短波发射的动态光谱,我们分析了 90 个蛇形发射观测案例,其中心载波频率逐渐降低(几次,有时为 0),然后在大大超过最大调制周期(1 小时)的时间间隔内,几乎增加到初始水平。在这种情况下,发射载波频率的典型调制周期为 1-60 分钟。最有可能观测到这种效应的时间是午夜前的几个小时。结果表明,在地磁活动较弱以及太阳风和 IMF 主要参数相对稳定的情况下,观测到了 fSE 的下降和随后的上升。考虑到所发现的 fSE 行为与 AE 指数动态的同步吻合,以及在当地午夜附近观测到的载波频率下降的影响,认为蛇形发射很可能是在极尖附近被激发,然后穿透极盖区域。长时间间隔观测到的 fSE 行为可能受等离子参数 β 和质子密度与氦离子密度之比 Np/Na 的制约,其动态变化与 fSE 的平均变化相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variation in the Serpentine Emission Carrier Frequency under Quiet Magnetosphere Conditions

The article studies variation in the serpentine emission carrier frequency fSE observed in the 0.1–5.0 Hz frequency range under quiet magnetosphere conditions (Kp ~ 0–2). The data of magnetic field recording at the Antarctic Vostok Observatory (corrected geomagnetic coordinates Φ′ = −85.41°, Λ′ = 69.01°) for 1970‒1972 were used in the analysis. Using the dynamic spectra of ULF emission, we analyzed 90 cases of serpentine emission observation, the center carrier frequency of which gradually decreased (several times, sometimes to 0), then increased almost to the initial level in time intervals significantly exceeding the maximum modulation period (1 h). In this case, typical modulation of the emission carrier frequency with periods of 1–60 min persisted. The most likely time of observation of the detected effect was in the hours before midnight. It is shown that a decrease and subsequent increase in fSE were observed versus weak geomagnetic activity and relative stability of the dominant number of solar wind and IMF parameters. Taking into account the discovered synchronous coincidence of the behavior of fSE and dynamics of the AE-index, as well as observation of the effect of a decrease in the carrier frequency near local midnight, it is suggested that serpentine emission is most likely excited near the polar cusp, then penetrates the polar cap region. The behavior of fSE observed over long time intervals is presumably governed by the plasma parameter β and ratio of the proton density to the helium ion density Np/Na, the dynamics of which are similar to the average variation in fSE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
期刊最新文献
Heliogeophysical Features and Viral Epidemics of the 21st Century Trigger Effects of Space Weather Impact on Earth Tectonics and Their Impact on Climate Climate Variations and Solar Activity in the Holocene The Influence of Explosive Processes in Active Regions on the Characteristics of the Magnetic Field in the Umbra of Sunspots Depending on Their Size and Position The Efficiency of Acceleration of Nonthermal Electrons with Whistler Turbulence in a Flare Loop Depending on Its Frequency Spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1