Siewert Hugelier, Qing Tang, Hannah Hyun-Sook Kim, Melina Theoni Gyparaki, Charles Bond, Adriana Naomi Santiago-Ruiz, Sílvia Porta, Melike Lakadamyali
{"title":"ECLiPSE:用于二维和三维单分子定位显微镜数据的结构和形态分析的多功能分类技术","authors":"Siewert Hugelier, Qing Tang, Hannah Hyun-Sook Kim, Melina Theoni Gyparaki, Charles Bond, Adriana Naomi Santiago-Ruiz, Sílvia Porta, Melike Lakadamyali","doi":"10.1038/s41592-024-02414-3","DOIUrl":null,"url":null,"abstract":"Single-molecule localization microscopy (SMLM) has gained widespread use for visualizing the morphology of subcellular organelles and structures with nanoscale spatial resolution. However, analysis tools for automatically quantifying and classifying SMLM images have lagged behind. Here we introduce Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE), an automated machine learning analysis pipeline specifically designed to classify cellular structures captured through two-dimensional or three-dimensional SMLM. ECLiPSE leverages a comprehensive set of shape descriptors, the majority of which are directly extracted from the localizations to minimize bias during the characterization of individual structures. ECLiPSE has been validated using both unsupervised and supervised classification on datasets, including various cellular structures, achieving near-perfect accuracy. We apply two-dimensional ECLiPSE to classify morphologically distinct protein aggregates relevant for neurodegenerative diseases. Additionally, we employ three-dimensional ECLiPSE to identify relevant biological differences between healthy and depolarized mitochondria. ECLiPSE will enhance the way we study cellular structures across various biological contexts. Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE) is a robust feature extraction and classification pipeline for diverse and heterogeneous structures in both 2D and 3D single-molecule localization microscopy data.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02414-3.pdf","citationCount":"0","resultStr":"{\"title\":\"ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data\",\"authors\":\"Siewert Hugelier, Qing Tang, Hannah Hyun-Sook Kim, Melina Theoni Gyparaki, Charles Bond, Adriana Naomi Santiago-Ruiz, Sílvia Porta, Melike Lakadamyali\",\"doi\":\"10.1038/s41592-024-02414-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-molecule localization microscopy (SMLM) has gained widespread use for visualizing the morphology of subcellular organelles and structures with nanoscale spatial resolution. However, analysis tools for automatically quantifying and classifying SMLM images have lagged behind. Here we introduce Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE), an automated machine learning analysis pipeline specifically designed to classify cellular structures captured through two-dimensional or three-dimensional SMLM. ECLiPSE leverages a comprehensive set of shape descriptors, the majority of which are directly extracted from the localizations to minimize bias during the characterization of individual structures. ECLiPSE has been validated using both unsupervised and supervised classification on datasets, including various cellular structures, achieving near-perfect accuracy. We apply two-dimensional ECLiPSE to classify morphologically distinct protein aggregates relevant for neurodegenerative diseases. Additionally, we employ three-dimensional ECLiPSE to identify relevant biological differences between healthy and depolarized mitochondria. ECLiPSE will enhance the way we study cellular structures across various biological contexts. Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE) is a robust feature extraction and classification pipeline for diverse and heterogeneous structures in both 2D and 3D single-molecule localization microscopy data.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41592-024-02414-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02414-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02414-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data
Single-molecule localization microscopy (SMLM) has gained widespread use for visualizing the morphology of subcellular organelles and structures with nanoscale spatial resolution. However, analysis tools for automatically quantifying and classifying SMLM images have lagged behind. Here we introduce Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE), an automated machine learning analysis pipeline specifically designed to classify cellular structures captured through two-dimensional or three-dimensional SMLM. ECLiPSE leverages a comprehensive set of shape descriptors, the majority of which are directly extracted from the localizations to minimize bias during the characterization of individual structures. ECLiPSE has been validated using both unsupervised and supervised classification on datasets, including various cellular structures, achieving near-perfect accuracy. We apply two-dimensional ECLiPSE to classify morphologically distinct protein aggregates relevant for neurodegenerative diseases. Additionally, we employ three-dimensional ECLiPSE to identify relevant biological differences between healthy and depolarized mitochondria. ECLiPSE will enhance the way we study cellular structures across various biological contexts. Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE) is a robust feature extraction and classification pipeline for diverse and heterogeneous structures in both 2D and 3D single-molecule localization microscopy data.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.