{"title":"多比特腔体 QED 系统的熵动力学研究","authors":"Hui-hui Miao","doi":"10.1002/qute.202400246","DOIUrl":null,"url":null,"abstract":"<p>Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored. In the modified version of the Tavis–Cummings–Hubbard model, atoms are held in optical cavities through optical tweezers and can jump between different cavities through the tunneling effect. The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon. Electron spin and the Pauli exclusion principle are considered. Formation and break of covalent bond and creation and annihilation of phonon are also introduced into the model. The system is bipartite. The effect of all kinds of interactions on entropy is studied. And the von Neumann entropy of different subsystems is compared. The results show that the entropic dynamics can be controlled by selectively choosing system parameters, and the entropy values of different subsystems satisfy certain inequality relationships.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Entropic Dynamics of Multiqubit Cavity QED System\",\"authors\":\"Hui-hui Miao\",\"doi\":\"10.1002/qute.202400246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored. In the modified version of the Tavis–Cummings–Hubbard model, atoms are held in optical cavities through optical tweezers and can jump between different cavities through the tunneling effect. The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon. Electron spin and the Pauli exclusion principle are considered. Formation and break of covalent bond and creation and annihilation of phonon are also introduced into the model. The system is bipartite. The effect of all kinds of interactions on entropy is studied. And the von Neumann entropy of different subsystems is compared. The results show that the entropic dynamics can be controlled by selectively choosing system parameters, and the entropy values of different subsystems satisfy certain inequality relationships.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Investigating Entropic Dynamics of Multiqubit Cavity QED System
Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored. In the modified version of the Tavis–Cummings–Hubbard model, atoms are held in optical cavities through optical tweezers and can jump between different cavities through the tunneling effect. The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon. Electron spin and the Pauli exclusion principle are considered. Formation and break of covalent bond and creation and annihilation of phonon are also introduced into the model. The system is bipartite. The effect of all kinds of interactions on entropy is studied. And the von Neumann entropy of different subsystems is compared. The results show that the entropic dynamics can be controlled by selectively choosing system parameters, and the entropy values of different subsystems satisfy certain inequality relationships.