基于图测量的神经预测器的量子架构搜索

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-08-12 DOI:10.1002/qute.202400223
Zhimin He, Zhengjiang Li, Maijie Deng, Shenggen Zheng, Haozhen Situ, Lvzhou Li
{"title":"基于图测量的神经预测器的量子架构搜索","authors":"Zhimin He,&nbsp;Zhengjiang Li,&nbsp;Maijie Deng,&nbsp;Shenggen Zheng,&nbsp;Haozhen Situ,&nbsp;Lvzhou Li","doi":"10.1002/qute.202400223","DOIUrl":null,"url":null,"abstract":"<p>Quantum architecture search (QAS) has attracted increasing attention owing to its remarkable ability to automate the design of quantum circuits for variational quantum algorithms (VQAs). However, evaluating the performance of numerous quantum circuits is essential to provide feedback for the search strategy, which inevitably renders QAS computationally expensive. Performance predictors have emerged as highly efficient evaluation methods to mitigate this challenge. However, the performance predictor faces a critical challenge in reducing the required number of circuit-performance pairs for training. This study encodes circuit architecture by representing a quantum circuit as a relational graph that emphasizes message exchange. Subsequently, valuable information about circuit architecture is extracted through three types of graph measures, including distance-based, degree-based, and cluster-based measures. The graph measures define a smooth space related to circuit performance, facilitating the training of the performance predictor. The effectiveness of the proposed method is assessed across three tasks within variational quantum eigensolvers (VQE): identifying the ground states of the Transverse Field Ising Model (TFIM), the Heisenberg model, and the <span></span><math>\n <semantics>\n <msub>\n <mtext>BeH</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{BeH}_2$</annotation>\n </semantics></math> molecule. The simulation results demonstrate notable enhancements in predictive accuracy achieved by our method, coupled with a substantial reduction in the required number of training samples for the predictor.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Architecture Search with Neural Predictor Based on Graph Measures\",\"authors\":\"Zhimin He,&nbsp;Zhengjiang Li,&nbsp;Maijie Deng,&nbsp;Shenggen Zheng,&nbsp;Haozhen Situ,&nbsp;Lvzhou Li\",\"doi\":\"10.1002/qute.202400223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum architecture search (QAS) has attracted increasing attention owing to its remarkable ability to automate the design of quantum circuits for variational quantum algorithms (VQAs). However, evaluating the performance of numerous quantum circuits is essential to provide feedback for the search strategy, which inevitably renders QAS computationally expensive. Performance predictors have emerged as highly efficient evaluation methods to mitigate this challenge. However, the performance predictor faces a critical challenge in reducing the required number of circuit-performance pairs for training. This study encodes circuit architecture by representing a quantum circuit as a relational graph that emphasizes message exchange. Subsequently, valuable information about circuit architecture is extracted through three types of graph measures, including distance-based, degree-based, and cluster-based measures. The graph measures define a smooth space related to circuit performance, facilitating the training of the performance predictor. The effectiveness of the proposed method is assessed across three tasks within variational quantum eigensolvers (VQE): identifying the ground states of the Transverse Field Ising Model (TFIM), the Heisenberg model, and the <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>BeH</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{BeH}_2$</annotation>\\n </semantics></math> molecule. The simulation results demonstrate notable enhancements in predictive accuracy achieved by our method, coupled with a substantial reduction in the required number of training samples for the predictor.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

量子架构搜索(QAS)因其自动设计变量子算法(VQAs)量子电路的卓越能力而受到越来越多的关注。然而,评估众多量子电路的性能对于为搜索策略提供反馈至关重要,这不可避免地使 QAS 的计算成本变得昂贵。性能预测器作为一种高效的评估方法已经出现,以缓解这一挑战。然而,性能预测器在减少训练所需的电路-性能对数量方面面临严峻挑战。本研究通过将量子电路表示为强调信息交换的关系图来编码电路架构。随后,通过三种图测量方法(包括基于距离的测量方法、基于度的测量方法和基于聚类的测量方法)提取电路架构的有价值信息。图度量定义了一个与电路性能相关的平滑空间,有助于性能预测器的训练。在变分量子求解器(VQE)的三个任务中评估了所提方法的有效性:识别横向场伊辛模型(TFIM)、海森堡模型和分子的基态。仿真结果表明,我们的方法显著提高了预测精度,同时大幅减少了预测器所需的训练样本数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Architecture Search with Neural Predictor Based on Graph Measures

Quantum architecture search (QAS) has attracted increasing attention owing to its remarkable ability to automate the design of quantum circuits for variational quantum algorithms (VQAs). However, evaluating the performance of numerous quantum circuits is essential to provide feedback for the search strategy, which inevitably renders QAS computationally expensive. Performance predictors have emerged as highly efficient evaluation methods to mitigate this challenge. However, the performance predictor faces a critical challenge in reducing the required number of circuit-performance pairs for training. This study encodes circuit architecture by representing a quantum circuit as a relational graph that emphasizes message exchange. Subsequently, valuable information about circuit architecture is extracted through three types of graph measures, including distance-based, degree-based, and cluster-based measures. The graph measures define a smooth space related to circuit performance, facilitating the training of the performance predictor. The effectiveness of the proposed method is assessed across three tasks within variational quantum eigensolvers (VQE): identifying the ground states of the Transverse Field Ising Model (TFIM), the Heisenberg model, and the BeH 2 $\text{BeH}_2$ molecule. The simulation results demonstrate notable enhancements in predictive accuracy achieved by our method, coupled with a substantial reduction in the required number of training samples for the predictor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Laser Beam Induced Charge Collection for Defect Mapping and Spin State Readout in Diamond (Adv. Quantum Technol. 12/2024) Inside Front Cover: Numerical Investigation of a Coupled Micropillar - Waveguide System for Integrated Quantum Photonic Circuits (Adv. Quantum Technol. 12/2024) Back Cover: Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation (Adv. Quantum Technol. 12/2024) Issue Information (Adv. Quantum Technol. 12/2024) Issue Information (Adv. Quantum Technol. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1