Hannah Kleppe, Anastasia Budan, Lucas Zhang, Marie Majetic, Reva Shenwai, Alan Levinson, Olga Cisne-Thompson, Farshad Farshidifar, Jonathan Tsui, Sylwia Figarska, Timothy Hoey, James Priest, Rebecca Slater
{"title":"减少 MTSS1 的表达可增加部分单基因 DCM 的肌节数量并改善其收缩能力","authors":"Hannah Kleppe, Anastasia Budan, Lucas Zhang, Marie Majetic, Reva Shenwai, Alan Levinson, Olga Cisne-Thompson, Farshad Farshidifar, Jonathan Tsui, Sylwia Figarska, Timothy Hoey, James Priest, Rebecca Slater","doi":"10.1101/2024.08.14.24311020","DOIUrl":null,"url":null,"abstract":"Background: The I-bar protein MTSS1 is a known modifier of heart failure and contractile phenotypes but its role in modulating contractile dysfunction in genetic forms of Mendelian dilated cardiomyopathy (DCM) is not known. Methods: The potential role of cardiac MTSS1 in TTN DCM was explored using time-to-event models in observational human datasets. Using induced siRNA and mutant forms of pluripotent stem cell cardiomyocytes (iPSC-CMs) the impact of siRNA knockdown of MTSS upon sarcomere and Cardiomyocyte biology was assessed via quantitative high-content microscopy, and the impact and mechanism of MTSS1 knockdown upon contractility was assessed using engineered heart tissues (EHTs). Results: Amongst individuals affected with TTN DCM, a variant conferring lower cardiac levels of MTSS1 was associated with significantly improved event-free survival from cardiovascular death or heart transplant (HR 0.29, p=0.0016). Knockdown of MTSS1 by siRNA significantly improved the appearance of iPSC-CM models of TTN (p=2.9e-06), CSRP3 (p=3.1e-14), and RBM20 (p=4.4e-04) DCM as assessed by quantitative microscopy. Correspondingly, siRNA knockdown of MTSS1 increased contractility in EHT models of TTN DCM (p=0.003), CSRP3 DCM (p=0.008), and RBM20 DCM (p<2e-16). Across all genetic backgrounds, knockdown of MTSS1 was observed to increase the number of sarcomeres (p<0.0001), and in co-immunoprecipitation experiments MTSS1 physically interacts with MYO18A a key determinant of early sarcomere formation. Knockdown of MTSS1 resulted in increased transcription of MYH7 (0.29 log2FC, p=2.9e-06) along with other sarcomere genes. Conclusions: In iPSC-CMs Knockdown of MTSS1 by siRNA increased number of sarcomeres and was observed to increase twitch force in select in vitro models, suggesting MTSS1 may have a previously unrecognized role in modulating sarcomere production or turnover. Human observational and iPSC-CM experimental data supports the hypothesis that reduced expression of MTSS1 may be beneficial in Mendelian DCM caused by TTN, RBM20, and CSRP3.","PeriodicalId":501297,"journal":{"name":"medRxiv - Cardiovascular Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Expression of MTSS1 Increases Sarcomere Number and Improves Contractility in Select Forms of Monogenic DCM\",\"authors\":\"Hannah Kleppe, Anastasia Budan, Lucas Zhang, Marie Majetic, Reva Shenwai, Alan Levinson, Olga Cisne-Thompson, Farshad Farshidifar, Jonathan Tsui, Sylwia Figarska, Timothy Hoey, James Priest, Rebecca Slater\",\"doi\":\"10.1101/2024.08.14.24311020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The I-bar protein MTSS1 is a known modifier of heart failure and contractile phenotypes but its role in modulating contractile dysfunction in genetic forms of Mendelian dilated cardiomyopathy (DCM) is not known. Methods: The potential role of cardiac MTSS1 in TTN DCM was explored using time-to-event models in observational human datasets. Using induced siRNA and mutant forms of pluripotent stem cell cardiomyocytes (iPSC-CMs) the impact of siRNA knockdown of MTSS upon sarcomere and Cardiomyocyte biology was assessed via quantitative high-content microscopy, and the impact and mechanism of MTSS1 knockdown upon contractility was assessed using engineered heart tissues (EHTs). Results: Amongst individuals affected with TTN DCM, a variant conferring lower cardiac levels of MTSS1 was associated with significantly improved event-free survival from cardiovascular death or heart transplant (HR 0.29, p=0.0016). Knockdown of MTSS1 by siRNA significantly improved the appearance of iPSC-CM models of TTN (p=2.9e-06), CSRP3 (p=3.1e-14), and RBM20 (p=4.4e-04) DCM as assessed by quantitative microscopy. Correspondingly, siRNA knockdown of MTSS1 increased contractility in EHT models of TTN DCM (p=0.003), CSRP3 DCM (p=0.008), and RBM20 DCM (p<2e-16). Across all genetic backgrounds, knockdown of MTSS1 was observed to increase the number of sarcomeres (p<0.0001), and in co-immunoprecipitation experiments MTSS1 physically interacts with MYO18A a key determinant of early sarcomere formation. Knockdown of MTSS1 resulted in increased transcription of MYH7 (0.29 log2FC, p=2.9e-06) along with other sarcomere genes. Conclusions: In iPSC-CMs Knockdown of MTSS1 by siRNA increased number of sarcomeres and was observed to increase twitch force in select in vitro models, suggesting MTSS1 may have a previously unrecognized role in modulating sarcomere production or turnover. Human observational and iPSC-CM experimental data supports the hypothesis that reduced expression of MTSS1 may be beneficial in Mendelian DCM caused by TTN, RBM20, and CSRP3.\",\"PeriodicalId\":501297,\"journal\":{\"name\":\"medRxiv - Cardiovascular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Cardiovascular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.14.24311020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.14.24311020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduced Expression of MTSS1 Increases Sarcomere Number and Improves Contractility in Select Forms of Monogenic DCM
Background: The I-bar protein MTSS1 is a known modifier of heart failure and contractile phenotypes but its role in modulating contractile dysfunction in genetic forms of Mendelian dilated cardiomyopathy (DCM) is not known. Methods: The potential role of cardiac MTSS1 in TTN DCM was explored using time-to-event models in observational human datasets. Using induced siRNA and mutant forms of pluripotent stem cell cardiomyocytes (iPSC-CMs) the impact of siRNA knockdown of MTSS upon sarcomere and Cardiomyocyte biology was assessed via quantitative high-content microscopy, and the impact and mechanism of MTSS1 knockdown upon contractility was assessed using engineered heart tissues (EHTs). Results: Amongst individuals affected with TTN DCM, a variant conferring lower cardiac levels of MTSS1 was associated with significantly improved event-free survival from cardiovascular death or heart transplant (HR 0.29, p=0.0016). Knockdown of MTSS1 by siRNA significantly improved the appearance of iPSC-CM models of TTN (p=2.9e-06), CSRP3 (p=3.1e-14), and RBM20 (p=4.4e-04) DCM as assessed by quantitative microscopy. Correspondingly, siRNA knockdown of MTSS1 increased contractility in EHT models of TTN DCM (p=0.003), CSRP3 DCM (p=0.008), and RBM20 DCM (p<2e-16). Across all genetic backgrounds, knockdown of MTSS1 was observed to increase the number of sarcomeres (p<0.0001), and in co-immunoprecipitation experiments MTSS1 physically interacts with MYO18A a key determinant of early sarcomere formation. Knockdown of MTSS1 resulted in increased transcription of MYH7 (0.29 log2FC, p=2.9e-06) along with other sarcomere genes. Conclusions: In iPSC-CMs Knockdown of MTSS1 by siRNA increased number of sarcomeres and was observed to increase twitch force in select in vitro models, suggesting MTSS1 may have a previously unrecognized role in modulating sarcomere production or turnover. Human observational and iPSC-CM experimental data supports the hypothesis that reduced expression of MTSS1 may be beneficial in Mendelian DCM caused by TTN, RBM20, and CSRP3.