{"title":"迭代西尔平斯基三角形图的多元独立性多项式枚举","authors":"K. S. Nithiya, D. Easwaramoorthy","doi":"10.1140/epjs/s11734-024-01304-1","DOIUrl":null,"url":null,"abstract":"<p>In dynamical systems, fractals and their features have been proven for a wide range of applications in graphical structures. In particular, self-similar graphs as well as graph polynomials play a vital role. This paper explores the characteristics of the polynomials for the family of well-known self-similar graphs, namely Sierpinski triangle graph of the <span>\\(n^{\\text {th}}\\)</span> iteration, and proposes an algorithm to compute the multivariate independence polynomials of these graphs. We employ iterative patterns from the Sierpinski triangle graph, and we implement our approach to explicitly compute the independent sets to formulate multivariate independence polynomials for iterative values of <i>n</i>. In addition, the inverse of these polynomials have been computed using SAGE software.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of multivariate independence polynomial for iterations of Sierpinski triangle graph\",\"authors\":\"K. S. Nithiya, D. Easwaramoorthy\",\"doi\":\"10.1140/epjs/s11734-024-01304-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In dynamical systems, fractals and their features have been proven for a wide range of applications in graphical structures. In particular, self-similar graphs as well as graph polynomials play a vital role. This paper explores the characteristics of the polynomials for the family of well-known self-similar graphs, namely Sierpinski triangle graph of the <span>\\\\(n^{\\\\text {th}}\\\\)</span> iteration, and proposes an algorithm to compute the multivariate independence polynomials of these graphs. We employ iterative patterns from the Sierpinski triangle graph, and we implement our approach to explicitly compute the independent sets to formulate multivariate independence polynomials for iterative values of <i>n</i>. In addition, the inverse of these polynomials have been computed using SAGE software.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01304-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01304-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在动力学系统中,分形及其特征已被证明可广泛应用于图形结构。其中,自相似图以及图多项式起着至关重要的作用。本文探讨了众所周知的自相似图族,即 Sierpinski 三角形图的(n^{text {th}}\ )迭代多项式的特征,并提出了一种计算这些图的多元独立性多项式的算法。我们采用了西尔平斯基三角形图的迭代模式,并实现了显式计算独立集的方法,以求出 n 的迭代值的多元独立性多项式。
Enumeration of multivariate independence polynomial for iterations of Sierpinski triangle graph
In dynamical systems, fractals and their features have been proven for a wide range of applications in graphical structures. In particular, self-similar graphs as well as graph polynomials play a vital role. This paper explores the characteristics of the polynomials for the family of well-known self-similar graphs, namely Sierpinski triangle graph of the \(n^{\text {th}}\) iteration, and proposes an algorithm to compute the multivariate independence polynomials of these graphs. We employ iterative patterns from the Sierpinski triangle graph, and we implement our approach to explicitly compute the independent sets to formulate multivariate independence polynomials for iterative values of n. In addition, the inverse of these polynomials have been computed using SAGE software.