基于量子遗传算法的 T-S 模糊系统记忆状态反馈控制

K. Sanjay, R. Vijay Aravind, P. Balasubramaniam
{"title":"基于量子遗传算法的 T-S 模糊系统记忆状态反馈控制","authors":"K. Sanjay, R. Vijay Aravind, P. Balasubramaniam","doi":"10.1140/epjs/s11734-024-01293-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the authors utilize a linear matrix inequality (LMI) technique for designing a quantum genetic algorithm (QGA)-based memory state feedback control of a nonlinear system. The performance of the proposed model is enhanced using the QGA-based algorithm for finding the control gain matrices as a searching tool. To evaluate the fitness function of QGA, the LMI problem is formulated as a constrained optimization. The more general Lyapunov–Krasovskii (LKFs) functional is selected to analyze the closed-loop system stability and the criterion for its asymptotic stability. Numerical examples are provided to verify the effectiveness of the QGA-based proposed control scheme.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum genetic algorithm-based memory state feedback control for T–S fuzzy system\",\"authors\":\"K. Sanjay, R. Vijay Aravind, P. Balasubramaniam\",\"doi\":\"10.1140/epjs/s11734-024-01293-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the authors utilize a linear matrix inequality (LMI) technique for designing a quantum genetic algorithm (QGA)-based memory state feedback control of a nonlinear system. The performance of the proposed model is enhanced using the QGA-based algorithm for finding the control gain matrices as a searching tool. To evaluate the fitness function of QGA, the LMI problem is formulated as a constrained optimization. The more general Lyapunov–Krasovskii (LKFs) functional is selected to analyze the closed-loop system stability and the criterion for its asymptotic stability. Numerical examples are provided to verify the effectiveness of the QGA-based proposed control scheme.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01293-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01293-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,作者利用线性矩阵不等式(LMI)技术设计了基于量子遗传算法(QGA)的非线性系统记忆状态反馈控制。利用基于 QGA 的算法寻找控制增益矩阵作为搜索工具,提高了所提模型的性能。为了评估 QGA 的拟合函数,将 LMI 问题表述为约束优化。选择更通用的 Lyapunov-Krasovskii (LKFs) 函数来分析闭环系统稳定性及其渐近稳定性标准。我们提供了数值示例来验证基于 QGA 的拟议控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum genetic algorithm-based memory state feedback control for T–S fuzzy system

In this paper, the authors utilize a linear matrix inequality (LMI) technique for designing a quantum genetic algorithm (QGA)-based memory state feedback control of a nonlinear system. The performance of the proposed model is enhanced using the QGA-based algorithm for finding the control gain matrices as a searching tool. To evaluate the fitness function of QGA, the LMI problem is formulated as a constrained optimization. The more general Lyapunov–Krasovskii (LKFs) functional is selected to analyze the closed-loop system stability and the criterion for its asymptotic stability. Numerical examples are provided to verify the effectiveness of the QGA-based proposed control scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of sprott chaotic systems via projection of the attractors using deep learning methods Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification Jet substructure probe to freeze-in dark matter in alternative cosmological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1