基于时空信息增益的嵌入式图结构学习的风电场集群功率超短期预测

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-09-06 DOI:10.1109/TSTE.2024.3455759
Mao Yang;Yunfeng Guo;Fulin Fan
{"title":"基于时空信息增益的嵌入式图结构学习的风电场集群功率超短期预测","authors":"Mao Yang;Yunfeng Guo;Fulin Fan","doi":"10.1109/TSTE.2024.3455759","DOIUrl":null,"url":null,"abstract":"Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R\n<sup>2</sup>\n and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"308-322"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Short-Term Prediction of Wind Farm Cluster Power Based on Embedded Graph Structure Learning With Spatiotemporal Information Gain\",\"authors\":\"Mao Yang;Yunfeng Guo;Fulin Fan\",\"doi\":\"10.1109/TSTE.2024.3455759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R\\n<sup>2</sup>\\n and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 1\",\"pages\":\"308-322\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669105/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669105/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风电场集群功率超短期预测对于制定日内发电计划具有重要意义,但由于天气系统的混沌效应和信息的不完全性,功率预测精度难以进一步提高。为此,本文提出了一种结合时空信息增益(STIG)理论的风电场集群(WFC)嵌入式图结构学习方法。基于风电场间功率波形的时空传递关系,构建了描述风电场间信息时空演化关系的图结构。提出了一种嵌入式图注意网络(EGAN)来学习wf之间的STIG邻接关系,并构造了一种基于STIG距离的wf冗余节点动态分组方案,以降低建模复杂度。将该方法应用于内蒙古地区WFC,结果表明,在所有时间尺度上,该方法的NRMSE、NMAE和MAPE分别比其他方法平均低2.63%、2.09%和20.95%,R2和Pr分别比其他方法平均高7.66%和6.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-Short-Term Prediction of Wind Farm Cluster Power Based on Embedded Graph Structure Learning With Spatiotemporal Information Gain
Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R 2 and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1