使用两阶段定价机制的多微网合作联盟优化调度策略

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-08-26 DOI:10.1109/TSTE.2024.3449909
Yonghui Nie;Zhi Li;Jie Zhang;Lei Gao;Yang Li;Hengyu Zhou
{"title":"使用两阶段定价机制的多微网合作联盟优化调度策略","authors":"Yonghui Nie;Zhi Li;Jie Zhang;Lei Gao;Yang Li;Hengyu Zhou","doi":"10.1109/TSTE.2024.3449909","DOIUrl":null,"url":null,"abstract":"To coordinate resources among multi-level stakeholders and enhance the integration of electric vehicles (EVs) into multi-microgrids, this study proposes an optimal dispatch strategy within a multi-microgrid cooperative alliance using a nuanced two-stage pricing mechanism. Initially, the strategy assesses electric energy interactions between microgrids and distribution networks to establish a foundation for collaborative scheduling. The two-stage pricing mechanism initiates with a leader-follower game, wherein the microgrid operator acts as the leader and users as followers. Subsequently, it adjusts EV tariffs based on the game's equilibrium, taking into account factors such as battery degradation and travel needs to optimize EVs' electricity consumption. Furthermore, a bi-level optimization model refines power interactions and pricing strategies across the network, significantly enhancing demand response capabilities and economic outcomes. Simulation results demonstrate that this strategy not only increases renewable energy consumption but also reduces energy costs, thereby improving the overall efficiency and sustainability of the system.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"174-188"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Dispatch Strategy for a Multi-Microgrid Cooperative Alliance Using a Two-Stage Pricing Mechanism\",\"authors\":\"Yonghui Nie;Zhi Li;Jie Zhang;Lei Gao;Yang Li;Hengyu Zhou\",\"doi\":\"10.1109/TSTE.2024.3449909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To coordinate resources among multi-level stakeholders and enhance the integration of electric vehicles (EVs) into multi-microgrids, this study proposes an optimal dispatch strategy within a multi-microgrid cooperative alliance using a nuanced two-stage pricing mechanism. Initially, the strategy assesses electric energy interactions between microgrids and distribution networks to establish a foundation for collaborative scheduling. The two-stage pricing mechanism initiates with a leader-follower game, wherein the microgrid operator acts as the leader and users as followers. Subsequently, it adjusts EV tariffs based on the game's equilibrium, taking into account factors such as battery degradation and travel needs to optimize EVs' electricity consumption. Furthermore, a bi-level optimization model refines power interactions and pricing strategies across the network, significantly enhancing demand response capabilities and economic outcomes. Simulation results demonstrate that this strategy not only increases renewable energy consumption but also reduces energy costs, thereby improving the overall efficiency and sustainability of the system.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 1\",\"pages\":\"174-188\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10648707/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648707/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了协调多层次利益相关者之间的资源,增强电动汽车与多微电网的整合,本研究提出了一种基于两阶段定价机制的多微电网合作联盟内的最优调度策略。首先,该策略评估了微电网和配电网之间的电力相互作用,为协同调度奠定了基础。两阶段定价机制从一个领导者-追随者博弈开始,其中微电网运营商作为领导者,用户作为追随者。随后,它根据博弈均衡调整电动汽车电价,考虑电池退化和出行需求等因素,优化电动汽车的用电量。此外,双层优化模型细化了整个电网的电力交互和定价策略,显著提高了需求响应能力和经济效益。仿真结果表明,该策略不仅增加了可再生能源的消耗,而且降低了能源成本,从而提高了系统的整体效率和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Dispatch Strategy for a Multi-Microgrid Cooperative Alliance Using a Two-Stage Pricing Mechanism
To coordinate resources among multi-level stakeholders and enhance the integration of electric vehicles (EVs) into multi-microgrids, this study proposes an optimal dispatch strategy within a multi-microgrid cooperative alliance using a nuanced two-stage pricing mechanism. Initially, the strategy assesses electric energy interactions between microgrids and distribution networks to establish a foundation for collaborative scheduling. The two-stage pricing mechanism initiates with a leader-follower game, wherein the microgrid operator acts as the leader and users as followers. Subsequently, it adjusts EV tariffs based on the game's equilibrium, taking into account factors such as battery degradation and travel needs to optimize EVs' electricity consumption. Furthermore, a bi-level optimization model refines power interactions and pricing strategies across the network, significantly enhancing demand response capabilities and economic outcomes. Simulation results demonstrate that this strategy not only increases renewable energy consumption but also reduces energy costs, thereby improving the overall efficiency and sustainability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1