用于数据保密暖通空调耗电量预测的自适应迁移学习框架

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-08-16 DOI:10.1109/TSTE.2024.3444689
Yanan Zhang;Gan Zhou;Zhan Liu;Li Huang;Yucheng Ren
{"title":"用于数据保密暖通空调耗电量预测的自适应迁移学习框架","authors":"Yanan Zhang;Gan Zhou;Zhan Liu;Li Huang;Yucheng Ren","doi":"10.1109/TSTE.2024.3444689","DOIUrl":null,"url":null,"abstract":"Heating, ventilation, and air conditioning (HVAC) systems constitute a large proportion of building energy consumption and provide considerable potential for power grid regulation. While the HVAC power consumption forecasting task is generally straightforward with sufficient historical data, it becomes challenging when dealing with scarce data. Such situation is common in cases of intermittent data collection or early system implementations, where precise forecasting is required despite limited data available. Considering accessible datasets from nearby or similar HVAC systems through energy management systems, this paper proposes an adaptive transfer learning framework to tackle this issue. Specifically, the framework leverages diverse source domains, employing model-level regularizers to quantify domain discrepancies and an adaptive parameter regulation mechanism to dynamically align source domains with the target domain. Embedded within the framework, a unique deep learning architecture with attention mechanisms is proposed, capable of identifying complex temporal patterns and hierarchical features in HVAC systems. Experiments on public HVAC datasets demonstrate the generalization, accuracy and robustness of our methodology under diverse data-scarce scenarios.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2815-2825"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Transfer Learning Framework for Data-Scarce HVAC Power Consumption Forecasting\",\"authors\":\"Yanan Zhang;Gan Zhou;Zhan Liu;Li Huang;Yucheng Ren\",\"doi\":\"10.1109/TSTE.2024.3444689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heating, ventilation, and air conditioning (HVAC) systems constitute a large proportion of building energy consumption and provide considerable potential for power grid regulation. While the HVAC power consumption forecasting task is generally straightforward with sufficient historical data, it becomes challenging when dealing with scarce data. Such situation is common in cases of intermittent data collection or early system implementations, where precise forecasting is required despite limited data available. Considering accessible datasets from nearby or similar HVAC systems through energy management systems, this paper proposes an adaptive transfer learning framework to tackle this issue. Specifically, the framework leverages diverse source domains, employing model-level regularizers to quantify domain discrepancies and an adaptive parameter regulation mechanism to dynamically align source domains with the target domain. Embedded within the framework, a unique deep learning architecture with attention mechanisms is proposed, capable of identifying complex temporal patterns and hierarchical features in HVAC systems. Experiments on public HVAC datasets demonstrate the generalization, accuracy and robustness of our methodology under diverse data-scarce scenarios.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 4\",\"pages\":\"2815-2825\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637762/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10637762/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

供暖、通风和空调(HVAC)系统在建筑能耗中占很大比例,并为电网调节提供了相当大的潜力。虽然在历史数据充足的情况下,暖通空调耗电量预测任务一般比较简单,但在数据匮乏的情况下,这项任务就变得具有挑战性。这种情况常见于数据收集时断时续或系统实施初期,尽管可用数据有限,但仍需要进行精确预测。考虑到可通过能源管理系统从附近或类似的暖通空调系统获取数据集,本文提出了一种自适应迁移学习框架来解决这一问题。具体来说,该框架利用不同的源域,采用模型级正则表达式量化域差异,并采用自适应参数调节机制动态调整源域与目标域。在该框架中,提出了一种独特的深度学习架构,该架构具有注意力机制,能够识别暖通空调系统中复杂的时间模式和分层特征。在公共暖通空调数据集上进行的实验证明了我们的方法在各种数据稀缺场景下的通用性、准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Transfer Learning Framework for Data-Scarce HVAC Power Consumption Forecasting
Heating, ventilation, and air conditioning (HVAC) systems constitute a large proportion of building energy consumption and provide considerable potential for power grid regulation. While the HVAC power consumption forecasting task is generally straightforward with sufficient historical data, it becomes challenging when dealing with scarce data. Such situation is common in cases of intermittent data collection or early system implementations, where precise forecasting is required despite limited data available. Considering accessible datasets from nearby or similar HVAC systems through energy management systems, this paper proposes an adaptive transfer learning framework to tackle this issue. Specifically, the framework leverages diverse source domains, employing model-level regularizers to quantify domain discrepancies and an adaptive parameter regulation mechanism to dynamically align source domains with the target domain. Embedded within the framework, a unique deep learning architecture with attention mechanisms is proposed, capable of identifying complex temporal patterns and hierarchical features in HVAC systems. Experiments on public HVAC datasets demonstrate the generalization, accuracy and robustness of our methodology under diverse data-scarce scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Transactions on Sustainable Energy Information for Authors 2024 Index IEEE Transactions on Sustainable Energy Vol. 15 Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1