模拟解体事件并传播空间碎片轨道

Marius Apetrii, Alessandra Celletti, Christos Efthymiopoulos, Cǎtǎlin Galeş, Tudor Vartolomei
{"title":"模拟解体事件并传播空间碎片轨道","authors":"Marius Apetrii, Alessandra Celletti, Christos Efthymiopoulos, Cǎtǎlin Galeş, Tudor Vartolomei","doi":"10.1007/s10569-024-10205-3","DOIUrl":null,"url":null,"abstract":"<p>Explosions or collisions of satellites around the Earth generate space debris, whose uncontrolled dynamics might raise serious threats for operational satellites. Mitigation actions can be realized on the basis of our knowledge of the characteristics of the fragments produced during the breakup event and their subsequent propagation. In this context, important information can be obtained by implementing a breakup simulator, which provides, for example, the number of fragments, their area-to-mass ratio or the relative velocity distribution as a function of the characteristic length of the fragments. Motivated by the need to analyze the dynamics of the fragments, we reconstruct a simulator based on the NASA/JSC breakup model EVOLVE 4.0 that we review for self-consistency. This model, created at the beginning of the XXI century, is based on laboratory and on-orbit tests. Given that materials and methods for building satellites are constantly progressing, we leave some key parameters variable and produce results for different choices of the parameters. We will also present an application to the Iridium–Cosmos collision and we discuss the distribution function after a breakup event. The breakup model is strongly related to the propagation of the fragments; in this work, we discuss how to choose the models and the numerical integrators, we propose examples of how fragments can disperse in time, and we study the behavior of multiple simultaneous fragmentations. Finally, we compute some indicators for detecting streams of fragments. Breakup and propagation are performed using our own simulator SIMPRO, built from EVOLVE 4.0; the executable program will be freely available on GitHub.</p>","PeriodicalId":72537,"journal":{"name":"Celestial mechanics and dynamical astronomy","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating a breakup event and propagating the orbits of space debris\",\"authors\":\"Marius Apetrii, Alessandra Celletti, Christos Efthymiopoulos, Cǎtǎlin Galeş, Tudor Vartolomei\",\"doi\":\"10.1007/s10569-024-10205-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Explosions or collisions of satellites around the Earth generate space debris, whose uncontrolled dynamics might raise serious threats for operational satellites. Mitigation actions can be realized on the basis of our knowledge of the characteristics of the fragments produced during the breakup event and their subsequent propagation. In this context, important information can be obtained by implementing a breakup simulator, which provides, for example, the number of fragments, their area-to-mass ratio or the relative velocity distribution as a function of the characteristic length of the fragments. Motivated by the need to analyze the dynamics of the fragments, we reconstruct a simulator based on the NASA/JSC breakup model EVOLVE 4.0 that we review for self-consistency. This model, created at the beginning of the XXI century, is based on laboratory and on-orbit tests. Given that materials and methods for building satellites are constantly progressing, we leave some key parameters variable and produce results for different choices of the parameters. We will also present an application to the Iridium–Cosmos collision and we discuss the distribution function after a breakup event. The breakup model is strongly related to the propagation of the fragments; in this work, we discuss how to choose the models and the numerical integrators, we propose examples of how fragments can disperse in time, and we study the behavior of multiple simultaneous fragmentations. Finally, we compute some indicators for detecting streams of fragments. Breakup and propagation are performed using our own simulator SIMPRO, built from EVOLVE 4.0; the executable program will be freely available on GitHub.</p>\",\"PeriodicalId\":72537,\"journal\":{\"name\":\"Celestial mechanics and dynamical astronomy\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celestial mechanics and dynamical astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10569-024-10205-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celestial mechanics and dynamical astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10569-024-10205-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星在地球周围爆炸或碰撞会产生空间碎片,其失控的动态可能会对运行中的卫星造成严重威胁。我们可以根据我们对解体事件中产生的碎片的特性及其后续传播的了解来采取缓解行动。在这种情况下,可以通过实施破裂模拟器来获得重要信息,例如提供碎片数量、碎片面积与质量比或作为碎片特征长度函数的相对速度分布。出于分析碎片动力学的需要,我们在美国国家航空航天局/美国国家航天中心的破裂模型 EVOLVE 4.0 的基础上重建了一个模拟器,并对其自洽性进行了审查。该模型创建于二十一世纪初,以实验室和在轨测试为基础。鉴于建造卫星的材料和方法在不断进步,我们对一些关键参数进行了调整,并得出了不同参数选择下的结果。我们还将介绍铱星-宇宙号碰撞的应用,并讨论破裂事件后的分布函数。分裂模型与碎片的传播密切相关;在这项工作中,我们讨论了如何选择模型和数值积分器,我们提出了碎片如何在时间中分散的例子,我们还研究了多个碎片同时分裂的行为。最后,我们计算了一些检测碎片流的指标。我们使用自己的模拟器 SIMPRO 进行分裂和传播,该模拟器由 EVOLVE 4.0 构建;可执行程序将在 GitHub 上免费提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulating a breakup event and propagating the orbits of space debris

Explosions or collisions of satellites around the Earth generate space debris, whose uncontrolled dynamics might raise serious threats for operational satellites. Mitigation actions can be realized on the basis of our knowledge of the characteristics of the fragments produced during the breakup event and their subsequent propagation. In this context, important information can be obtained by implementing a breakup simulator, which provides, for example, the number of fragments, their area-to-mass ratio or the relative velocity distribution as a function of the characteristic length of the fragments. Motivated by the need to analyze the dynamics of the fragments, we reconstruct a simulator based on the NASA/JSC breakup model EVOLVE 4.0 that we review for self-consistency. This model, created at the beginning of the XXI century, is based on laboratory and on-orbit tests. Given that materials and methods for building satellites are constantly progressing, we leave some key parameters variable and produce results for different choices of the parameters. We will also present an application to the Iridium–Cosmos collision and we discuss the distribution function after a breakup event. The breakup model is strongly related to the propagation of the fragments; in this work, we discuss how to choose the models and the numerical integrators, we propose examples of how fragments can disperse in time, and we study the behavior of multiple simultaneous fragmentations. Finally, we compute some indicators for detecting streams of fragments. Breakup and propagation are performed using our own simulator SIMPRO, built from EVOLVE 4.0; the executable program will be freely available on GitHub.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding flow around planetary moons via finite-time Lyapunov exponent maps Spin orbit resonance cascade via core shell model: application to Mercury and Ganymede Orbiting below the Brillouin sphere using shifted spherical harmonics Application of the theory of functional connections to the perturbed Lambert’s problem Spin–orbit coupling of the primary body in a binary asteroid system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1