Tarek Beutler, Annette Rudolph, Daniel Goehring, Nikki Vercauteren
{"title":"利用深度学习探索降水预报的区域外推能力","authors":"Tarek Beutler, Annette Rudolph, Daniel Goehring, Nikki Vercauteren","doi":"10.1127/metz/2024/1189","DOIUrl":null,"url":null,"abstract":"Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The evaluation of spatial and temporal information still challenges state-of-the-art numerical weather prediction models. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work, a Trajectory Gated Recurrent Unit (TrajGRU) is applied to radar data of the German Weather Service. The impact of finetuning a network pretrained at a different location and for several precipitation intensity thresholds with respect to the training time is evaluated. In cases with little availability of training data at the target location, for example when heavy rainfall is rare, the finetuned model can benefit from the original model performance at the pretraining location. Furthermore, the skill scores for the different thresholds are shown for a prediction time up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation nowcasting.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the ability of regional extrapolation for precipitation nowcasting with deep learning\",\"authors\":\"Tarek Beutler, Annette Rudolph, Daniel Goehring, Nikki Vercauteren\",\"doi\":\"10.1127/metz/2024/1189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The evaluation of spatial and temporal information still challenges state-of-the-art numerical weather prediction models. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work, a Trajectory Gated Recurrent Unit (TrajGRU) is applied to radar data of the German Weather Service. The impact of finetuning a network pretrained at a different location and for several precipitation intensity thresholds with respect to the training time is evaluated. In cases with little availability of training data at the target location, for example when heavy rainfall is rare, the finetuned model can benefit from the original model performance at the pretraining location. Furthermore, the skill scores for the different thresholds are shown for a prediction time up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation nowcasting.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1127/metz/2024/1189\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1127/metz/2024/1189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the ability of regional extrapolation for precipitation nowcasting with deep learning
Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The evaluation of spatial and temporal information still challenges state-of-the-art numerical weather prediction models. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work, a Trajectory Gated Recurrent Unit (TrajGRU) is applied to radar data of the German Weather Service. The impact of finetuning a network pretrained at a different location and for several precipitation intensity thresholds with respect to the training time is evaluated. In cases with little availability of training data at the target location, for example when heavy rainfall is rare, the finetuned model can benefit from the original model performance at the pretraining location. Furthermore, the skill scores for the different thresholds are shown for a prediction time up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation nowcasting.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.