具有两个自由度和范德尔波尔耦合的振荡系统:分析方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-28 DOI:10.1002/mma.10446
Sinisa Kraljevic, Miodrag Zukovic, Livija Cveticanin
{"title":"具有两个自由度和范德尔波尔耦合的振荡系统:分析方法","authors":"Sinisa Kraljevic, Miodrag Zukovic, Livija Cveticanin","doi":"10.1002/mma.10446","DOIUrl":null,"url":null,"abstract":"In this paper steady‐state vibrations of the two‐degrees‐of‐freedom oscillatory systems with van der Pol coupling are investigated. The model is a system of two differential equations with weak nonlinearity. A new solving procedure based on D′Alembert's method and the method of time‐variable amplitude and phase is developed. The main advantage of the method in comparison to others is that it gives the solution of the system of two coupled weak nonlinear equations in the form that is simple to analyze, as it has the same form as the solution of the corresponding system of linear equations. In the paper two types of systems are considered: one, a two‐mass system with two degrees of freedom, and second, the one‐mass system with two degrees of freedom. The torsional vibrations of a two‐mass system and vibrations of a Jeffcott rotor with two‐degrees‐of‐freedom are analyzed. Analytically obtained results are numerically tested. It is obtained that the difference between analytic and numeric results is small and almost negligible. As the accuracy of the analytic solution is high, it is suitable for application in technics and engineering. Conclusions about steady‐state self‐sustainable oscillators, orbital, and limit cycle motions are given.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory systems with two degrees of freedom and van der Pol coupling: Analytical approach\",\"authors\":\"Sinisa Kraljevic, Miodrag Zukovic, Livija Cveticanin\",\"doi\":\"10.1002/mma.10446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper steady‐state vibrations of the two‐degrees‐of‐freedom oscillatory systems with van der Pol coupling are investigated. The model is a system of two differential equations with weak nonlinearity. A new solving procedure based on D′Alembert's method and the method of time‐variable amplitude and phase is developed. The main advantage of the method in comparison to others is that it gives the solution of the system of two coupled weak nonlinear equations in the form that is simple to analyze, as it has the same form as the solution of the corresponding system of linear equations. In the paper two types of systems are considered: one, a two‐mass system with two degrees of freedom, and second, the one‐mass system with two degrees of freedom. The torsional vibrations of a two‐mass system and vibrations of a Jeffcott rotor with two‐degrees‐of‐freedom are analyzed. Analytically obtained results are numerically tested. It is obtained that the difference between analytic and numeric results is small and almost negligible. As the accuracy of the analytic solution is high, it is suitable for application in technics and engineering. Conclusions about steady‐state self‐sustainable oscillators, orbital, and limit cycle motions are given.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有范德尔波尔耦合的双自由度振荡系统的稳态振动。该模型是一个具有弱非线性的两微分方程系统。在 D′Alembert 方法和时变振幅与相位方法的基础上开发了一种新的求解程序。与其他方法相比,该方法的主要优势在于它给出了两个耦合弱非线性方程组的解,其形式与相应线性方程组的解相同,分析起来非常简单。本文考虑了两类系统:一是具有两个自由度的双质量系统,二是具有两个自由度的单质量系统。本文分析了双质量系统的扭转振动和具有两个自由度的 Jeffcott 转子的振动。对分析得出的结果进行了数值检验。结果表明,分析结果和数值结果之间的差异很小,几乎可以忽略不计。由于解析解的精确度较高,因此适合在技术和工程中应用。给出了有关稳态自持振荡器、轨道和极限周期运动的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oscillatory systems with two degrees of freedom and van der Pol coupling: Analytical approach
In this paper steady‐state vibrations of the two‐degrees‐of‐freedom oscillatory systems with van der Pol coupling are investigated. The model is a system of two differential equations with weak nonlinearity. A new solving procedure based on D′Alembert's method and the method of time‐variable amplitude and phase is developed. The main advantage of the method in comparison to others is that it gives the solution of the system of two coupled weak nonlinear equations in the form that is simple to analyze, as it has the same form as the solution of the corresponding system of linear equations. In the paper two types of systems are considered: one, a two‐mass system with two degrees of freedom, and second, the one‐mass system with two degrees of freedom. The torsional vibrations of a two‐mass system and vibrations of a Jeffcott rotor with two‐degrees‐of‐freedom are analyzed. Analytically obtained results are numerically tested. It is obtained that the difference between analytic and numeric results is small and almost negligible. As the accuracy of the analytic solution is high, it is suitable for application in technics and engineering. Conclusions about steady‐state self‐sustainable oscillators, orbital, and limit cycle motions are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1