Jeffrey Duxbury, Samuel J. Bentley, Kehui Xu, Navid H. Jafari
{"title":"通过 210Pb/137Cs 地球年代学划分密西西比河三角洲前沿大规模流失沉积的时间尺度","authors":"Jeffrey Duxbury, Samuel J. Bentley, Kehui Xu, Navid H. Jafari","doi":"10.3390/jmse12091644","DOIUrl":null,"url":null,"abstract":"The Mississippi River Delta Front (MRDF) is a subaqueous apron of rapidly deposited and weakly consolidated sediment extending from the subaerial portions of the Birdsfoot Delta of the Mississippi River, long characterized by mass-wasting sediment transport. Four (4) depositional environments dominate regionally (an undisturbed topset apron, mudflow gully, mudflow lobe, and prodelta), centering around mudflow distribution initiated by a variety of factors (hurricanes, storms, and fluid pressure). To better understand the spatiotemporal scales of the events as well as the controlling processes, eight cores (5.8–8.0 m long) taken offshore from the South Pass (SP) and the Southwest Pass (SWP) were analyzed for gamma density, grain size, sediment fabric (X-radiography), and geochronology (210Pb/137Cs radionuclides). Previous work has focused on the deposition of individual passes and has been restricted to <3 m core penetration, limiting its geochronologic completeness. Building on other recent studies, within the mudflow gully and lobe cores, the homogeneous stepped profiles of 210Pb activities and the corresponding decreased gamma density indicate the presence of gravity-driven mass failures. 210Pb/137Cs indicates that gully sedimentary sediment accumulation since 1953 is greater than 580 cm (sediment accumulation rate [SAR] of 12.8 cm/y) in the southwest pass site, and a lower SAR of the South Pass gully sites (2.6 cm/y). This study shows that (1) recent dated mudflow deposits are identifiable in both the SWP and SP; (2) SWP mudflows have return periods of 10.7 y, six times more frequent than at the SP (66.7 y); (3) 210Pb inventories display higher levels in the SWP area, with the highest focusing factors in proximal/gully sedimentation, and (4) submarine landslides in both study areas remain important for sediment transport despite the differences in sediment delivery and discharge source proximity.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Scales of Mass Wasting Sedimentation across the Mississippi River Delta Front Delineated by 210Pb/137Cs Geochronology\",\"authors\":\"Jeffrey Duxbury, Samuel J. Bentley, Kehui Xu, Navid H. Jafari\",\"doi\":\"10.3390/jmse12091644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mississippi River Delta Front (MRDF) is a subaqueous apron of rapidly deposited and weakly consolidated sediment extending from the subaerial portions of the Birdsfoot Delta of the Mississippi River, long characterized by mass-wasting sediment transport. Four (4) depositional environments dominate regionally (an undisturbed topset apron, mudflow gully, mudflow lobe, and prodelta), centering around mudflow distribution initiated by a variety of factors (hurricanes, storms, and fluid pressure). To better understand the spatiotemporal scales of the events as well as the controlling processes, eight cores (5.8–8.0 m long) taken offshore from the South Pass (SP) and the Southwest Pass (SWP) were analyzed for gamma density, grain size, sediment fabric (X-radiography), and geochronology (210Pb/137Cs radionuclides). Previous work has focused on the deposition of individual passes and has been restricted to <3 m core penetration, limiting its geochronologic completeness. Building on other recent studies, within the mudflow gully and lobe cores, the homogeneous stepped profiles of 210Pb activities and the corresponding decreased gamma density indicate the presence of gravity-driven mass failures. 210Pb/137Cs indicates that gully sedimentary sediment accumulation since 1953 is greater than 580 cm (sediment accumulation rate [SAR] of 12.8 cm/y) in the southwest pass site, and a lower SAR of the South Pass gully sites (2.6 cm/y). This study shows that (1) recent dated mudflow deposits are identifiable in both the SWP and SP; (2) SWP mudflows have return periods of 10.7 y, six times more frequent than at the SP (66.7 y); (3) 210Pb inventories display higher levels in the SWP area, with the highest focusing factors in proximal/gully sedimentation, and (4) submarine landslides in both study areas remain important for sediment transport despite the differences in sediment delivery and discharge source proximity.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091644\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091644","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Temporal Scales of Mass Wasting Sedimentation across the Mississippi River Delta Front Delineated by 210Pb/137Cs Geochronology
The Mississippi River Delta Front (MRDF) is a subaqueous apron of rapidly deposited and weakly consolidated sediment extending from the subaerial portions of the Birdsfoot Delta of the Mississippi River, long characterized by mass-wasting sediment transport. Four (4) depositional environments dominate regionally (an undisturbed topset apron, mudflow gully, mudflow lobe, and prodelta), centering around mudflow distribution initiated by a variety of factors (hurricanes, storms, and fluid pressure). To better understand the spatiotemporal scales of the events as well as the controlling processes, eight cores (5.8–8.0 m long) taken offshore from the South Pass (SP) and the Southwest Pass (SWP) were analyzed for gamma density, grain size, sediment fabric (X-radiography), and geochronology (210Pb/137Cs radionuclides). Previous work has focused on the deposition of individual passes and has been restricted to <3 m core penetration, limiting its geochronologic completeness. Building on other recent studies, within the mudflow gully and lobe cores, the homogeneous stepped profiles of 210Pb activities and the corresponding decreased gamma density indicate the presence of gravity-driven mass failures. 210Pb/137Cs indicates that gully sedimentary sediment accumulation since 1953 is greater than 580 cm (sediment accumulation rate [SAR] of 12.8 cm/y) in the southwest pass site, and a lower SAR of the South Pass gully sites (2.6 cm/y). This study shows that (1) recent dated mudflow deposits are identifiable in both the SWP and SP; (2) SWP mudflows have return periods of 10.7 y, six times more frequent than at the SP (66.7 y); (3) 210Pb inventories display higher levels in the SWP area, with the highest focusing factors in proximal/gully sedimentation, and (4) submarine landslides in both study areas remain important for sediment transport despite the differences in sediment delivery and discharge source proximity.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.