Wei Zhang, Kuichao Ma, Chang Cai, Xiangyu Sun, Jun Zhang, Xiaohui Zhong, Xiaomin Rong, Qing’an Li
{"title":"前缘粗糙度对厚风力涡轮机翼面空气动力性能影响的数值分析","authors":"Wei Zhang, Kuichao Ma, Chang Cai, Xiangyu Sun, Jun Zhang, Xiaohui Zhong, Xiaomin Rong, Qing’an Li","doi":"10.3390/jmse12091588","DOIUrl":null,"url":null,"abstract":"The aerodynamic performance of wind turbine airfoils is crucial for the efficiency and reliability of wind energy systems, with leading-edge roughness significantly impacting blade performance. This study conducts numerical simulations on the DU 00-W-401 airfoil to investigate the effects of leading-edge roughness. Results reveal that the rough airfoil exhibits a distinctive “N”-shaped lift coefficient curve. The formation mechanism of this nonlinear lift curve is primarily attributed to the development of the trailing-edge separation vortex and variations in the adverse pressure gradient from the maximum thickness position to the trailing-edge confluence. The impact of different roughness heights is further investigated. It is discovered that when the roughness height is higher than 0.3 mm, the boundary layer can be considered fully turbulent, and the lift curve shows the “N” shape stably. When the roughness height is between 0.07 mm and 0.1 mm, a transitional state can be observed, with several saltation points in the lift curve. The main characteristics of different flow regimes based on different lift curve segments are summarized. This research enhances the understanding of the effects of leading-edge roughness on the aerodynamic performance of a thick wind turbine airfoil, and the simulation method for considering the effect of leading-edge roughness is practical to be applied on large-scale wind turbine blade to estimate the aerodynamic performance under rough leading-edge conditions, thereby supporting advancements in wind turbine technology and promoting the broader adoption of renewable energy.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"61 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Leading-Edge Roughness Effects on the Aerodynamic Performance of a Thick Wind Turbine Airfoil\",\"authors\":\"Wei Zhang, Kuichao Ma, Chang Cai, Xiangyu Sun, Jun Zhang, Xiaohui Zhong, Xiaomin Rong, Qing’an Li\",\"doi\":\"10.3390/jmse12091588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aerodynamic performance of wind turbine airfoils is crucial for the efficiency and reliability of wind energy systems, with leading-edge roughness significantly impacting blade performance. This study conducts numerical simulations on the DU 00-W-401 airfoil to investigate the effects of leading-edge roughness. Results reveal that the rough airfoil exhibits a distinctive “N”-shaped lift coefficient curve. The formation mechanism of this nonlinear lift curve is primarily attributed to the development of the trailing-edge separation vortex and variations in the adverse pressure gradient from the maximum thickness position to the trailing-edge confluence. The impact of different roughness heights is further investigated. It is discovered that when the roughness height is higher than 0.3 mm, the boundary layer can be considered fully turbulent, and the lift curve shows the “N” shape stably. When the roughness height is between 0.07 mm and 0.1 mm, a transitional state can be observed, with several saltation points in the lift curve. The main characteristics of different flow regimes based on different lift curve segments are summarized. This research enhances the understanding of the effects of leading-edge roughness on the aerodynamic performance of a thick wind turbine airfoil, and the simulation method for considering the effect of leading-edge roughness is practical to be applied on large-scale wind turbine blade to estimate the aerodynamic performance under rough leading-edge conditions, thereby supporting advancements in wind turbine technology and promoting the broader adoption of renewable energy.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091588\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091588","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Numerical Analysis of Leading-Edge Roughness Effects on the Aerodynamic Performance of a Thick Wind Turbine Airfoil
The aerodynamic performance of wind turbine airfoils is crucial for the efficiency and reliability of wind energy systems, with leading-edge roughness significantly impacting blade performance. This study conducts numerical simulations on the DU 00-W-401 airfoil to investigate the effects of leading-edge roughness. Results reveal that the rough airfoil exhibits a distinctive “N”-shaped lift coefficient curve. The formation mechanism of this nonlinear lift curve is primarily attributed to the development of the trailing-edge separation vortex and variations in the adverse pressure gradient from the maximum thickness position to the trailing-edge confluence. The impact of different roughness heights is further investigated. It is discovered that when the roughness height is higher than 0.3 mm, the boundary layer can be considered fully turbulent, and the lift curve shows the “N” shape stably. When the roughness height is between 0.07 mm and 0.1 mm, a transitional state can be observed, with several saltation points in the lift curve. The main characteristics of different flow regimes based on different lift curve segments are summarized. This research enhances the understanding of the effects of leading-edge roughness on the aerodynamic performance of a thick wind turbine airfoil, and the simulation method for considering the effect of leading-edge roughness is practical to be applied on large-scale wind turbine blade to estimate the aerodynamic performance under rough leading-edge conditions, thereby supporting advancements in wind turbine technology and promoting the broader adoption of renewable energy.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.