{"title":"带石墨烯界面的手性超材料板状波导的色散关系和功率通量","authors":"H. H. Salman, H. A. Yasser","doi":"10.1007/s11182-024-03239-5","DOIUrl":null,"url":null,"abstract":"<p>The paper analyzes a three-layer waveguide made of chiral metamaterials separated by the graphene interface. The interface consists of three graphene monolayers with a thickness 0.34 nm, so the interface thickness is 1.02 nm. Mathematical formulas are derived for dispersion relations and power flux of guided waves for hybrid odd and even modes at right and left circular polarizations. Power profiles in the waveguide regions are potted and discussed. The work aims to investigate changes that occur due to the graphene presence as an interface in the chiral slab waveguide. It is shown that graphene properties affect the light propagation, which, in turn, provides a disappearance of the fundamental odd mode. The power flux through the waveguide shows a significant effect due to the presence of graphene and chirality.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 8","pages":"1251 - 1259"},"PeriodicalIF":0.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion Relation and Power Flux of Chiral Metamaterial Slab Waveguide with Graphene Interface\",\"authors\":\"H. H. Salman, H. A. Yasser\",\"doi\":\"10.1007/s11182-024-03239-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper analyzes a three-layer waveguide made of chiral metamaterials separated by the graphene interface. The interface consists of three graphene monolayers with a thickness 0.34 nm, so the interface thickness is 1.02 nm. Mathematical formulas are derived for dispersion relations and power flux of guided waves for hybrid odd and even modes at right and left circular polarizations. Power profiles in the waveguide regions are potted and discussed. The work aims to investigate changes that occur due to the graphene presence as an interface in the chiral slab waveguide. It is shown that graphene properties affect the light propagation, which, in turn, provides a disappearance of the fundamental odd mode. The power flux through the waveguide shows a significant effect due to the presence of graphene and chirality.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 8\",\"pages\":\"1251 - 1259\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03239-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03239-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dispersion Relation and Power Flux of Chiral Metamaterial Slab Waveguide with Graphene Interface
The paper analyzes a three-layer waveguide made of chiral metamaterials separated by the graphene interface. The interface consists of three graphene monolayers with a thickness 0.34 nm, so the interface thickness is 1.02 nm. Mathematical formulas are derived for dispersion relations and power flux of guided waves for hybrid odd and even modes at right and left circular polarizations. Power profiles in the waveguide regions are potted and discussed. The work aims to investigate changes that occur due to the graphene presence as an interface in the chiral slab waveguide. It is shown that graphene properties affect the light propagation, which, in turn, provides a disappearance of the fundamental odd mode. The power flux through the waveguide shows a significant effect due to the presence of graphene and chirality.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.