{"title":"具有不规则边界的压磁直角平面中的波反射和透射:边界元方法","authors":"Xi-meng Zhang, Hui Qi","doi":"10.1007/s00707-024-04063-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the problem of a piezomagnetic right-angle plane with irregular boundaries using the boundary element method. It considers SH waves and line source loads as external forces acting on the piezomagnetic right-angle plane. The effectiveness of the boundary element method is demonstrated through two different numerical examples. Firstly, in the absence of line source loads, the paper analyzes the dynamic characteristics in the first example by employing the image method and Graf addition theorem. Then, it introduces Green’s identities and solves the Green’s function in infinite three-dimensional space. In the second example, the paper investigates the dynamic characteristics when irregular boundaries are subjected to line source loads using the boundary element method. The results elucidate the influence on the dynamic stress concentration factor and magnetic field intensity concentration factor under appropriate conditions. Additionally, the analytical solutions are compared with finite element solutions to validate the accuracy of the conclusions presented in this study.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"235 11","pages":"6493 - 6517"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave reflection and transmission in a piezomagnetic right-angle plane with irregular boundaries: a boundary element approach\",\"authors\":\"Xi-meng Zhang, Hui Qi\",\"doi\":\"10.1007/s00707-024-04063-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines the problem of a piezomagnetic right-angle plane with irregular boundaries using the boundary element method. It considers SH waves and line source loads as external forces acting on the piezomagnetic right-angle plane. The effectiveness of the boundary element method is demonstrated through two different numerical examples. Firstly, in the absence of line source loads, the paper analyzes the dynamic characteristics in the first example by employing the image method and Graf addition theorem. Then, it introduces Green’s identities and solves the Green’s function in infinite three-dimensional space. In the second example, the paper investigates the dynamic characteristics when irregular boundaries are subjected to line source loads using the boundary element method. The results elucidate the influence on the dynamic stress concentration factor and magnetic field intensity concentration factor under appropriate conditions. Additionally, the analytical solutions are compared with finite element solutions to validate the accuracy of the conclusions presented in this study.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"235 11\",\"pages\":\"6493 - 6517\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-04063-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04063-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
本文采用边界元法研究了具有不规则边界的压磁直角平面问题。它将 SH 波和线源载荷视为作用在压磁直角平面上的外力。通过两个不同的数值示例证明了边界元方法的有效性。首先,在没有线源载荷的情况下,本文采用图像法和格拉夫加法定理分析了第一个例子的动态特性。然后,引入格林等值线,求解无限三维空间中的格林函数。在第二个例子中,本文使用边界元法研究了不规则边界受到线源载荷时的动态特性。结果阐明了在适当条件下动态应力集中系数和磁场强度集中系数的影响。此外,还将分析解与有限元解进行了比较,以验证本研究结论的准确性。
Wave reflection and transmission in a piezomagnetic right-angle plane with irregular boundaries: a boundary element approach
This paper examines the problem of a piezomagnetic right-angle plane with irregular boundaries using the boundary element method. It considers SH waves and line source loads as external forces acting on the piezomagnetic right-angle plane. The effectiveness of the boundary element method is demonstrated through two different numerical examples. Firstly, in the absence of line source loads, the paper analyzes the dynamic characteristics in the first example by employing the image method and Graf addition theorem. Then, it introduces Green’s identities and solves the Green’s function in infinite three-dimensional space. In the second example, the paper investigates the dynamic characteristics when irregular boundaries are subjected to line source loads using the boundary element method. The results elucidate the influence on the dynamic stress concentration factor and magnetic field intensity concentration factor under appropriate conditions. Additionally, the analytical solutions are compared with finite element solutions to validate the accuracy of the conclusions presented in this study.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.