{"title":"基于行进表面声波的微压电致动器:无添加和无标记细胞裂解工具","authors":"Sushama Agarwalla, Sunil Kumar Singh, Suhanya Duraiswamy","doi":"10.1063/5.0209663","DOIUrl":null,"url":null,"abstract":"We propose a traveling surface acoustic wave (TSAW)-based microfluidic method for cell lysis that enables lysis of any biological entity, without the need for additional additives. Lysis of cells in the sample solution flowing through a poly (dimethyl siloxane) microchannel is enabled by the interaction of cells with TSAWs propagated from gold interdigitated transducers (IDTs) patterned onto a LiNbO3 piezoelectric substrate, onto which the microchannel was also bonded. Numerical simulations to determine the wave propagation intensities with varying parameters including IDT design, supply voltage, and distance of the channel from the IDT were performed. Experiments were then used to validate the simulations and the best lysis parameters were used to maximize the nucleic acid/protein extraction efficiency (>95%) within few seconds. A comparative analysis of our method with traditional chemical, physical and thermal, as well as the current microfluidic methods for lysis demonstrates the superiority of our method. Our lysis strategy can hence be used independently and/or integrated with other nucleic acid-based technologies or point-of-care devices for the lysis of any pathogen (Gram positives and negatives), eukaryotic cells, and tissues at low voltage (3 V) and frequency (33.17 MHz), without the use of amplifiers.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"2 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A traveling surface acoustic wave-based micropiezoactuator: A tool for additive- and label-free cell lysis\",\"authors\":\"Sushama Agarwalla, Sunil Kumar Singh, Suhanya Duraiswamy\",\"doi\":\"10.1063/5.0209663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a traveling surface acoustic wave (TSAW)-based microfluidic method for cell lysis that enables lysis of any biological entity, without the need for additional additives. Lysis of cells in the sample solution flowing through a poly (dimethyl siloxane) microchannel is enabled by the interaction of cells with TSAWs propagated from gold interdigitated transducers (IDTs) patterned onto a LiNbO3 piezoelectric substrate, onto which the microchannel was also bonded. Numerical simulations to determine the wave propagation intensities with varying parameters including IDT design, supply voltage, and distance of the channel from the IDT were performed. Experiments were then used to validate the simulations and the best lysis parameters were used to maximize the nucleic acid/protein extraction efficiency (>95%) within few seconds. A comparative analysis of our method with traditional chemical, physical and thermal, as well as the current microfluidic methods for lysis demonstrates the superiority of our method. Our lysis strategy can hence be used independently and/or integrated with other nucleic acid-based technologies or point-of-care devices for the lysis of any pathogen (Gram positives and negatives), eukaryotic cells, and tissues at low voltage (3 V) and frequency (33.17 MHz), without the use of amplifiers.\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0209663\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0209663","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A traveling surface acoustic wave-based micropiezoactuator: A tool for additive- and label-free cell lysis
We propose a traveling surface acoustic wave (TSAW)-based microfluidic method for cell lysis that enables lysis of any biological entity, without the need for additional additives. Lysis of cells in the sample solution flowing through a poly (dimethyl siloxane) microchannel is enabled by the interaction of cells with TSAWs propagated from gold interdigitated transducers (IDTs) patterned onto a LiNbO3 piezoelectric substrate, onto which the microchannel was also bonded. Numerical simulations to determine the wave propagation intensities with varying parameters including IDT design, supply voltage, and distance of the channel from the IDT were performed. Experiments were then used to validate the simulations and the best lysis parameters were used to maximize the nucleic acid/protein extraction efficiency (>95%) within few seconds. A comparative analysis of our method with traditional chemical, physical and thermal, as well as the current microfluidic methods for lysis demonstrates the superiority of our method. Our lysis strategy can hence be used independently and/or integrated with other nucleic acid-based technologies or point-of-care devices for the lysis of any pathogen (Gram positives and negatives), eukaryotic cells, and tissues at low voltage (3 V) and frequency (33.17 MHz), without the use of amplifiers.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...