Anna Purtell, Jesse Anderson, Rebecca Ferguson, Konrad Juskiewicz, Michael H. Lee, Megan J. Lee, Lindsey Swierk
{"title":"墨西哥跳豆蛾幼虫(Cydia saltitans)扩展结构受损后避热行为的改变","authors":"Anna Purtell, Jesse Anderson, Rebecca Ferguson, Konrad Juskiewicz, Michael H. Lee, Megan J. Lee, Lindsey Swierk","doi":"10.1007/s10905-024-09861-y","DOIUrl":null,"url":null,"abstract":"<p>In response to physical damage, organisms must balance recovery with adaptive responses to other environmental stressors. Understanding how damage and repair influence adaptive responses to high environmental temperatures is of particular interest in light of global climate change. We investigate the impact of damage and subsequent repair on heat-avoidance behaviors in <i>Cydia saltitans</i> larvae using host seeds (<i>Sebastiania pavoniana</i>) as protective structures (together colloquially known as “Mexican jumping beans”). These larvae perform temperature-dependent “jumping” or “rolling” behaviors to escape extreme heat, which are crucial for larval survival in their native arid and hot subtropical dry forests. Due to possible costs of repair and limited energetic resources, we hypothesized that experiencing damage and investing in subsequent repair to a host seed would reduce larval displacement distance from extreme heat when compared to individuals that experienced damage without repairing the host seed, or the undamaged control group. Results suggest that larvae in control conditions exhibited greater displacement from heat compared to those in either damage treatment group. Contrary to predictions, damage and subsequent repair impaired heat avoidance behavior to same extent as damage without investing in repair. This reduced displacement distance in both damage treatment groups may be linked to energy allocation or an adaptive antipredator response. These findings contribute to our understanding of how environmental stressors interact to shape behavioral responses in insects with “extended architecture.” As global temperatures rise, insights into the flexibility of adaptive behaviors are increasingly crucial.</p>","PeriodicalId":16180,"journal":{"name":"Journal of Insect Behavior","volume":"286 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered Heat-Avoidance Behavior Following Damage to the Extended Architecture of Mexican Jumping Bean Moth Larvae (Cydia saltitans)\",\"authors\":\"Anna Purtell, Jesse Anderson, Rebecca Ferguson, Konrad Juskiewicz, Michael H. Lee, Megan J. Lee, Lindsey Swierk\",\"doi\":\"10.1007/s10905-024-09861-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to physical damage, organisms must balance recovery with adaptive responses to other environmental stressors. Understanding how damage and repair influence adaptive responses to high environmental temperatures is of particular interest in light of global climate change. We investigate the impact of damage and subsequent repair on heat-avoidance behaviors in <i>Cydia saltitans</i> larvae using host seeds (<i>Sebastiania pavoniana</i>) as protective structures (together colloquially known as “Mexican jumping beans”). These larvae perform temperature-dependent “jumping” or “rolling” behaviors to escape extreme heat, which are crucial for larval survival in their native arid and hot subtropical dry forests. Due to possible costs of repair and limited energetic resources, we hypothesized that experiencing damage and investing in subsequent repair to a host seed would reduce larval displacement distance from extreme heat when compared to individuals that experienced damage without repairing the host seed, or the undamaged control group. Results suggest that larvae in control conditions exhibited greater displacement from heat compared to those in either damage treatment group. Contrary to predictions, damage and subsequent repair impaired heat avoidance behavior to same extent as damage without investing in repair. This reduced displacement distance in both damage treatment groups may be linked to energy allocation or an adaptive antipredator response. These findings contribute to our understanding of how environmental stressors interact to shape behavioral responses in insects with “extended architecture.” As global temperatures rise, insights into the flexibility of adaptive behaviors are increasingly crucial.</p>\",\"PeriodicalId\":16180,\"journal\":{\"name\":\"Journal of Insect Behavior\",\"volume\":\"286 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Behavior\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10905-024-09861-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Behavior","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10905-024-09861-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Altered Heat-Avoidance Behavior Following Damage to the Extended Architecture of Mexican Jumping Bean Moth Larvae (Cydia saltitans)
In response to physical damage, organisms must balance recovery with adaptive responses to other environmental stressors. Understanding how damage and repair influence adaptive responses to high environmental temperatures is of particular interest in light of global climate change. We investigate the impact of damage and subsequent repair on heat-avoidance behaviors in Cydia saltitans larvae using host seeds (Sebastiania pavoniana) as protective structures (together colloquially known as “Mexican jumping beans”). These larvae perform temperature-dependent “jumping” or “rolling” behaviors to escape extreme heat, which are crucial for larval survival in their native arid and hot subtropical dry forests. Due to possible costs of repair and limited energetic resources, we hypothesized that experiencing damage and investing in subsequent repair to a host seed would reduce larval displacement distance from extreme heat when compared to individuals that experienced damage without repairing the host seed, or the undamaged control group. Results suggest that larvae in control conditions exhibited greater displacement from heat compared to those in either damage treatment group. Contrary to predictions, damage and subsequent repair impaired heat avoidance behavior to same extent as damage without investing in repair. This reduced displacement distance in both damage treatment groups may be linked to energy allocation or an adaptive antipredator response. These findings contribute to our understanding of how environmental stressors interact to shape behavioral responses in insects with “extended architecture.” As global temperatures rise, insights into the flexibility of adaptive behaviors are increasingly crucial.
期刊介绍:
Journal of Insect Behavior offers peer-reviewed research articles and short critical reviews on all aspects of the behavior of insects and other terrestrial arthropods such as spiders, centipedes, millipedes, and isopods. An internationally renowned editorial board discusses technological innovations and new developments in the field, emphasizing topics such as behavioral ecology, motor patterns and recognition, and genetic determinants.