通过大规模并行强化学习为仿人机器人学习滑板运动

William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur
{"title":"通过大规模并行强化学习为仿人机器人学习滑板运动","authors":"William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur","doi":"arxiv-2409.07846","DOIUrl":null,"url":null,"abstract":"Learning-based methods have proven useful at generating complex motions for\nrobots, including humanoids. Reinforcement learning (RL) has been used to learn\nlocomotion policies, some of which leverage a periodic reward formulation. This\nwork extends the periodic reward formulation of locomotion to skateboarding for\nthe REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast\ntraining. Initial results in simulation are presented with hardware experiments\nin progress.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Skateboarding for Humanoid Robots through Massively Parallel Reinforcement Learning\",\"authors\":\"William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur\",\"doi\":\"arxiv-2409.07846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning-based methods have proven useful at generating complex motions for\\nrobots, including humanoids. Reinforcement learning (RL) has been used to learn\\nlocomotion policies, some of which leverage a periodic reward formulation. This\\nwork extends the periodic reward formulation of locomotion to skateboarding for\\nthe REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast\\ntraining. Initial results in simulation are presented with hardware experiments\\nin progress.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,基于学习的方法有助于为机器人(包括人形机器人)生成复杂的运动。强化学习(RL)已被用于学习运动策略,其中一些策略利用了周期性奖励公式。本研究将运动的周期性奖励公式扩展到 REEM-C 机器人的滑板运动。Brax/MJX 用于实现 RL 问题,以实现快速训练。本文介绍了仿真的初步结果,硬件实验正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Skateboarding for Humanoid Robots through Massively Parallel Reinforcement Learning
Learning-based methods have proven useful at generating complex motions for robots, including humanoids. Reinforcement learning (RL) has been used to learn locomotion policies, some of which leverage a periodic reward formulation. This work extends the periodic reward formulation of locomotion to skateboarding for the REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast training. Initial results in simulation are presented with hardware experiments in progress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1