{"title":"泡沫挤压黑色发泡聚苯乙烯的隔热性能比较","authors":"E. Erünal","doi":"10.1007/s00289-024-05485-6","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal resistance of expanded polystyrene (EPS) insulation boards are investigated in terms of foam extrusion process equipped with an underwater pelletizer. This method has been used by several companies as an alternative process to obtain EPS beads from suspension polymerization of styrene. In this process either polystyrene granules with no cellular microstructure (general purpose polystyrene) or polystyrene beads with closed cell structure or both together can be used. Therefore, in this study, commercial general purpose polystyrene and expandable polystyrene materials were blended with either carbon black or graphite powder through foam extrusion process to obtain effective thermal resistance values. In order to make a fair comparison, materials were prepared similar to commercial recipes which include flame retardant and nucleating agent. It was observed that the compatibility of graphite powder with general purpose polystyrene was better than expandable polystyrene in terms of glass transition temperatures and thermal insulation values. The density of the prepared materials increased with the addition of carbon black to all samples. The best glass transition temperature was measured as 107.5 °C while the best thermal conductivity value was recorded as 0.2997 W/m.K which is fairly good when compared to commercial polystyrene insulation boards.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 18","pages":"16595 - 16605"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of thermal insulation performance of foam extruded black EPS\",\"authors\":\"E. Erünal\",\"doi\":\"10.1007/s00289-024-05485-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal resistance of expanded polystyrene (EPS) insulation boards are investigated in terms of foam extrusion process equipped with an underwater pelletizer. This method has been used by several companies as an alternative process to obtain EPS beads from suspension polymerization of styrene. In this process either polystyrene granules with no cellular microstructure (general purpose polystyrene) or polystyrene beads with closed cell structure or both together can be used. Therefore, in this study, commercial general purpose polystyrene and expandable polystyrene materials were blended with either carbon black or graphite powder through foam extrusion process to obtain effective thermal resistance values. In order to make a fair comparison, materials were prepared similar to commercial recipes which include flame retardant and nucleating agent. It was observed that the compatibility of graphite powder with general purpose polystyrene was better than expandable polystyrene in terms of glass transition temperatures and thermal insulation values. The density of the prepared materials increased with the addition of carbon black to all samples. The best glass transition temperature was measured as 107.5 °C while the best thermal conductivity value was recorded as 0.2997 W/m.K which is fairly good when compared to commercial polystyrene insulation boards.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"81 18\",\"pages\":\"16595 - 16605\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05485-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05485-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Comparison of thermal insulation performance of foam extruded black EPS
Thermal resistance of expanded polystyrene (EPS) insulation boards are investigated in terms of foam extrusion process equipped with an underwater pelletizer. This method has been used by several companies as an alternative process to obtain EPS beads from suspension polymerization of styrene. In this process either polystyrene granules with no cellular microstructure (general purpose polystyrene) or polystyrene beads with closed cell structure or both together can be used. Therefore, in this study, commercial general purpose polystyrene and expandable polystyrene materials were blended with either carbon black or graphite powder through foam extrusion process to obtain effective thermal resistance values. In order to make a fair comparison, materials were prepared similar to commercial recipes which include flame retardant and nucleating agent. It was observed that the compatibility of graphite powder with general purpose polystyrene was better than expandable polystyrene in terms of glass transition temperatures and thermal insulation values. The density of the prepared materials increased with the addition of carbon black to all samples. The best glass transition temperature was measured as 107.5 °C while the best thermal conductivity value was recorded as 0.2997 W/m.K which is fairly good when compared to commercial polystyrene insulation boards.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."