{"title":"生物基聚合物掺氮碳上的 CoFe2O4 纳米粒子作为锂空气电池的双功能电催化剂","authors":"Pirapath Arkasalerks, Amarshi Patra, Kottisa Sumala Patnaik, Koichi Higashimine, Noriyoshi Matsumi","doi":"10.1149/1945-7111/ad69c9","DOIUrl":null,"url":null,"abstract":"Lithium-air batteries (LABs) are gaining attention as a promising energy storage solution. Their theoretical energy density of 3,505 Whkg<sup>−1</sup> exceeds that of conventional lithium-ion batteries (500–800 Whkg<sup>−1</sup>). The commercial viability and widespread adoption of lithium-air batteries face challenges such as poor cycling stability, limited lifespan, and unresolved side reactions. In this study, we synthesized spinel CoFe<sub>2</sub>O<sub>4</sub>-decorated on bio-based poly(2,5-benzimidazole) derived N-doped carbon for electrocatalysts. Notably, strong metal-substrate interaction (SMSI) was observed through various characterizations. The bifunctional electrocatalytic activity and stability toward oxygen reduction reaction and oxygen evolution reaction were significantly enhanced by the SMSI, The LAB demonstrated a high discharge capacity of 18,356 mAhg<sup>−1</sup> at a current density of 200 mAg<sup>−1</sup>, maintaining a remarkable discharge capacity of 1,000 mAhg<sup>−1</sup> even at a high current density of 400 mAg<sup>−1</sup> for 200 cycles. CoFe<sub>2</sub>O<sub>4</sub>-decorated on bio-derived ABPBI holds promise as a practical air-breathing electrode for high-capacity rechargeable LABs.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"23 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoFe2O4 Nanoparticles on Bio-Based Polymer Derived Nitrogen Doped Carbon as Bifunctional Electrocatalyst for Li-Air Battery\",\"authors\":\"Pirapath Arkasalerks, Amarshi Patra, Kottisa Sumala Patnaik, Koichi Higashimine, Noriyoshi Matsumi\",\"doi\":\"10.1149/1945-7111/ad69c9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-air batteries (LABs) are gaining attention as a promising energy storage solution. Their theoretical energy density of 3,505 Whkg<sup>−1</sup> exceeds that of conventional lithium-ion batteries (500–800 Whkg<sup>−1</sup>). The commercial viability and widespread adoption of lithium-air batteries face challenges such as poor cycling stability, limited lifespan, and unresolved side reactions. In this study, we synthesized spinel CoFe<sub>2</sub>O<sub>4</sub>-decorated on bio-based poly(2,5-benzimidazole) derived N-doped carbon for electrocatalysts. Notably, strong metal-substrate interaction (SMSI) was observed through various characterizations. The bifunctional electrocatalytic activity and stability toward oxygen reduction reaction and oxygen evolution reaction were significantly enhanced by the SMSI, The LAB demonstrated a high discharge capacity of 18,356 mAhg<sup>−1</sup> at a current density of 200 mAg<sup>−1</sup>, maintaining a remarkable discharge capacity of 1,000 mAhg<sup>−1</sup> even at a high current density of 400 mAg<sup>−1</sup> for 200 cycles. CoFe<sub>2</sub>O<sub>4</sub>-decorated on bio-derived ABPBI holds promise as a practical air-breathing electrode for high-capacity rechargeable LABs.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad69c9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad69c9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
CoFe2O4 Nanoparticles on Bio-Based Polymer Derived Nitrogen Doped Carbon as Bifunctional Electrocatalyst for Li-Air Battery
Lithium-air batteries (LABs) are gaining attention as a promising energy storage solution. Their theoretical energy density of 3,505 Whkg−1 exceeds that of conventional lithium-ion batteries (500–800 Whkg−1). The commercial viability and widespread adoption of lithium-air batteries face challenges such as poor cycling stability, limited lifespan, and unresolved side reactions. In this study, we synthesized spinel CoFe2O4-decorated on bio-based poly(2,5-benzimidazole) derived N-doped carbon for electrocatalysts. Notably, strong metal-substrate interaction (SMSI) was observed through various characterizations. The bifunctional electrocatalytic activity and stability toward oxygen reduction reaction and oxygen evolution reaction were significantly enhanced by the SMSI, The LAB demonstrated a high discharge capacity of 18,356 mAhg−1 at a current density of 200 mAg−1, maintaining a remarkable discharge capacity of 1,000 mAhg−1 even at a high current density of 400 mAg−1 for 200 cycles. CoFe2O4-decorated on bio-derived ABPBI holds promise as a practical air-breathing electrode for high-capacity rechargeable LABs.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.