非指数带尾非晶材料的扩展陶克-洛伦兹模型

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-09-11 DOI:10.1109/LED.2024.3458392
Yuri Vygranenko;Guilherme Lavareda
{"title":"非指数带尾非晶材料的扩展陶克-洛伦兹模型","authors":"Yuri Vygranenko;Guilherme Lavareda","doi":"10.1109/LED.2024.3458392","DOIUrl":null,"url":null,"abstract":"Dielectric function models are essential for determining the optical constants of a substance as a function of photon energy using optical transmission, reflection or spectroscopic ellipsometry measurements. In this letter, we present an extended Tauc–Lorentz model tailored for amorphous materials with non-exponential band tails. Our method employs an exponential function with a polynomial argument to define the imaginary part of the dielectric function in the sub-gap region, with the polynomial order varying based on the complexity of sub-gap absorption features and the precision of the fitted experimental data. The real part of the dielectric function is obtained through the Kramers–Kronig relations as a sum of two components associated with interband and sub-gap transitions, allowing for the comparison of their contributions. These components are calculated analytically and numerically, simplifying the model’s implementation. We illustrate the model’s application by extracting the optical constants from the transmission spectrum of a hydrogenated silicon nitride thin film.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2146-2149"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Tauc-Lorentz Model for Amorphous Materials With Non-Exponential Band Tails\",\"authors\":\"Yuri Vygranenko;Guilherme Lavareda\",\"doi\":\"10.1109/LED.2024.3458392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dielectric function models are essential for determining the optical constants of a substance as a function of photon energy using optical transmission, reflection or spectroscopic ellipsometry measurements. In this letter, we present an extended Tauc–Lorentz model tailored for amorphous materials with non-exponential band tails. Our method employs an exponential function with a polynomial argument to define the imaginary part of the dielectric function in the sub-gap region, with the polynomial order varying based on the complexity of sub-gap absorption features and the precision of the fitted experimental data. The real part of the dielectric function is obtained through the Kramers–Kronig relations as a sum of two components associated with interband and sub-gap transitions, allowing for the comparison of their contributions. These components are calculated analytically and numerically, simplifying the model’s implementation. We illustrate the model’s application by extracting the optical constants from the transmission spectrum of a hydrogenated silicon nitride thin film.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2146-2149\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10677427/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10677427/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

介电函数模型对于利用光透射、反射或光谱椭偏测量法确定物质的光学常数与光子能量的函数关系至关重要。在这封信中,我们提出了一种扩展的陶克-洛伦兹(Tauc-Lorentz)模型,该模型专为具有非指数带尾的无定形材料量身定制。我们的方法采用带有多项式参数的指数函数来定义亚间隙区域介电函数的虚部,多项式阶数根据亚间隙吸收特征的复杂性和拟合实验数据的精度而变化。介电函数的实部是通过克拉默-克罗尼格关系得到的,是与带间跃迁和亚间隙跃迁相关的两个分量之和,从而可以比较它们的贡献。这些分量是通过分析和数值计算得到的,从而简化了模型的实现。我们通过从氢化氮化硅薄膜的透射光谱中提取光学常数来说明该模型的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Tauc-Lorentz Model for Amorphous Materials With Non-Exponential Band Tails
Dielectric function models are essential for determining the optical constants of a substance as a function of photon energy using optical transmission, reflection or spectroscopic ellipsometry measurements. In this letter, we present an extended Tauc–Lorentz model tailored for amorphous materials with non-exponential band tails. Our method employs an exponential function with a polynomial argument to define the imaginary part of the dielectric function in the sub-gap region, with the polynomial order varying based on the complexity of sub-gap absorption features and the precision of the fitted experimental data. The real part of the dielectric function is obtained through the Kramers–Kronig relations as a sum of two components associated with interband and sub-gap transitions, allowing for the comparison of their contributions. These components are calculated analytically and numerically, simplifying the model’s implementation. We illustrate the model’s application by extracting the optical constants from the transmission spectrum of a hydrogenated silicon nitride thin film.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1