具有同态可塑性的全集成膜霍奇金-赫胥黎神经元

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-09-10 DOI:10.1109/LED.2024.3456816
Yue Yang;Xumeng Zhang;Pei Chen;Lingli Cheng;Yanting Ding;Chao Li;Jie Yu;Qi Liu
{"title":"具有同态可塑性的全集成膜霍奇金-赫胥黎神经元","authors":"Yue Yang;Xumeng Zhang;Pei Chen;Lingli Cheng;Yanting Ding;Chao Li;Jie Yu;Qi Liu","doi":"10.1109/LED.2024.3456816","DOIUrl":null,"url":null,"abstract":"Artificial neurons based on the Hodgkin-Huxley (H-H) models could mimic the richest firing patterns, showing great potential in building high-intelligent systems. Emerging devices, such as NbO2-based threshold-switching devices, exhibit more advantages in constructing H-H neuron circuits compared to conventional transistors. However, the on-chip integration of the memristive H-H neuron circuit remains unexplored, limiting its practical applications in hardware. Here, we design and fabricate a fully integrated memristive H-H neuron circuit and achieve all-or-nothing, refractory period, integrator, class 1 excitation, tonic spiking, subthreshold oscillation, tonic bursting, and mixed-mode firing behaviors. We also demonstrate the homeostatic plasticity based on integrated H-H neuron, specifically, the neuron increases threshold spontaneously when receiving an excessively strong input to avoid the superexcitation in the neuron. This work verifies the feasibility of building an integrated memristive H-H neuron and lays the foundation for building high-bionic neuromorphic systems.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2225-2228"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Integrated Memristive Hodgkin-Huxley Neurons With Homeostatic Plasticity\",\"authors\":\"Yue Yang;Xumeng Zhang;Pei Chen;Lingli Cheng;Yanting Ding;Chao Li;Jie Yu;Qi Liu\",\"doi\":\"10.1109/LED.2024.3456816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neurons based on the Hodgkin-Huxley (H-H) models could mimic the richest firing patterns, showing great potential in building high-intelligent systems. Emerging devices, such as NbO2-based threshold-switching devices, exhibit more advantages in constructing H-H neuron circuits compared to conventional transistors. However, the on-chip integration of the memristive H-H neuron circuit remains unexplored, limiting its practical applications in hardware. Here, we design and fabricate a fully integrated memristive H-H neuron circuit and achieve all-or-nothing, refractory period, integrator, class 1 excitation, tonic spiking, subthreshold oscillation, tonic bursting, and mixed-mode firing behaviors. We also demonstrate the homeostatic plasticity based on integrated H-H neuron, specifically, the neuron increases threshold spontaneously when receiving an excessively strong input to avoid the superexcitation in the neuron. This work verifies the feasibility of building an integrated memristive H-H neuron and lays the foundation for building high-bionic neuromorphic systems.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2225-2228\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10671568/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10671568/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于霍奇金-赫胥黎(H-H)模型的人工神经元可以模仿最丰富的发射模式,在构建高智能系统方面显示出巨大潜力。与传统晶体管相比,基于氧化铌的阈值开关器件等新兴器件在构建 H-H 神经元电路方面具有更多优势。然而,忆阻 H-H 神经元电路的片上集成仍有待探索,限制了其在硬件中的实际应用。在这里,我们设计并制造了一个完全集成的忆阻性 H-H 神经元电路,并实现了全有或全无、折射期、积分器、1 级兴奋、强直性尖峰、阈下振荡、强直性猝发和混合模式发射行为。我们还展示了基于集成 H-H 神经元的同态可塑性,具体来说,当接收到过强的输入时,神经元会自发地提高阈值,以避免神经元过度兴奋。这项工作验证了构建集成记忆性 H-H 神经元的可行性,为构建高仿生神经形态系统奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully Integrated Memristive Hodgkin-Huxley Neurons With Homeostatic Plasticity
Artificial neurons based on the Hodgkin-Huxley (H-H) models could mimic the richest firing patterns, showing great potential in building high-intelligent systems. Emerging devices, such as NbO2-based threshold-switching devices, exhibit more advantages in constructing H-H neuron circuits compared to conventional transistors. However, the on-chip integration of the memristive H-H neuron circuit remains unexplored, limiting its practical applications in hardware. Here, we design and fabricate a fully integrated memristive H-H neuron circuit and achieve all-or-nothing, refractory period, integrator, class 1 excitation, tonic spiking, subthreshold oscillation, tonic bursting, and mixed-mode firing behaviors. We also demonstrate the homeostatic plasticity based on integrated H-H neuron, specifically, the neuron increases threshold spontaneously when receiving an excessively strong input to avoid the superexcitation in the neuron. This work verifies the feasibility of building an integrated memristive H-H neuron and lays the foundation for building high-bionic neuromorphic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1