嵌入式沟道铁电场效应晶体管的低频噪声特性

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-09-02 DOI:10.1109/LED.2024.3452776
Been Kwak;Jangsaeng Kim;Kitae Lee;Wonjun Shin;Daewoong Kwon
{"title":"嵌入式沟道铁电场效应晶体管的低频噪声特性","authors":"Been Kwak;Jangsaeng Kim;Kitae Lee;Wonjun Shin;Daewoong Kwon","doi":"10.1109/LED.2024.3452776","DOIUrl":null,"url":null,"abstract":"This study investigates low-frequency noise (LFN) and random telegraph noise (RTN) characteristics of hafnium-zirconium oxide (HZO) ferroelectric field-effect transistors with recessed channels (R-FeFETs) from a reliability analysis perspective. As the delay time increases after the program (PGM), the threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {TH}}\\text {)}$ </tex-math></inline-formula>\n is shifted by trapped electron detrapping and does not saturate. From LFN measurement, it is revealed that the origin of 1/f noise in the R-FeFETs is carrier number fluctuation. RTN is also observed with a distinct corner frequency (\n<inline-formula> <tex-math>${f}_{\\text {c}}~\\approx ~480$ </tex-math></inline-formula>\n Hz). It is confirmed that the trap is distributed locally at the DE/FE interface (z \n<inline-formula> <tex-math>$\\approx ~1.5$ </tex-math></inline-formula>\n nm) due to the structural specificity of R-FeFETs, resulting in RTN. The results of this work provide valuable insight for understanding the reliability issue of R-FeFETs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2118-2121"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Frequency Noise Characteristics of Recessed Channel Ferroelectric Field-Effect Transistors\",\"authors\":\"Been Kwak;Jangsaeng Kim;Kitae Lee;Wonjun Shin;Daewoong Kwon\",\"doi\":\"10.1109/LED.2024.3452776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates low-frequency noise (LFN) and random telegraph noise (RTN) characteristics of hafnium-zirconium oxide (HZO) ferroelectric field-effect transistors with recessed channels (R-FeFETs) from a reliability analysis perspective. As the delay time increases after the program (PGM), the threshold voltage (\\n<inline-formula> <tex-math>${V}_{\\\\text {TH}}\\\\text {)}$ </tex-math></inline-formula>\\n is shifted by trapped electron detrapping and does not saturate. From LFN measurement, it is revealed that the origin of 1/f noise in the R-FeFETs is carrier number fluctuation. RTN is also observed with a distinct corner frequency (\\n<inline-formula> <tex-math>${f}_{\\\\text {c}}~\\\\approx ~480$ </tex-math></inline-formula>\\n Hz). It is confirmed that the trap is distributed locally at the DE/FE interface (z \\n<inline-formula> <tex-math>$\\\\approx ~1.5$ </tex-math></inline-formula>\\n nm) due to the structural specificity of R-FeFETs, resulting in RTN. The results of this work provide valuable insight for understanding the reliability issue of R-FeFETs.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2118-2121\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10662904/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10662904/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究从可靠性分析的角度研究了具有凹槽的氧化铪-氧化锆(HZO)铁电场效应晶体管(R-FeFET)的低频噪声(LFN)和随机电报噪声(RTN)特性。随着编程(PGM)后延迟时间的增加,阈值电压(${V}_{text {TH}\text {)}$会因电子脱困而发生偏移,并且不会达到饱和。通过 LFN 测量发现,R-FeFET 中 1/f 噪声的起源是载流子数量波动。同时还观察到 RTN 有一个明显的角频率(${f}_{text {c}}~approx ~480$ Hz)。研究证实,由于 R-FeFET 结构的特殊性,陷阱局部分布在 DE/FE 界面(z $\approx ~1.5$ nm),从而导致了 RTN。这项工作的结果为理解 R-FeFET 的可靠性问题提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Frequency Noise Characteristics of Recessed Channel Ferroelectric Field-Effect Transistors
This study investigates low-frequency noise (LFN) and random telegraph noise (RTN) characteristics of hafnium-zirconium oxide (HZO) ferroelectric field-effect transistors with recessed channels (R-FeFETs) from a reliability analysis perspective. As the delay time increases after the program (PGM), the threshold voltage ( ${V}_{\text {TH}}\text {)}$ is shifted by trapped electron detrapping and does not saturate. From LFN measurement, it is revealed that the origin of 1/f noise in the R-FeFETs is carrier number fluctuation. RTN is also observed with a distinct corner frequency ( ${f}_{\text {c}}~\approx ~480$ Hz). It is confirmed that the trap is distributed locally at the DE/FE interface (z $\approx ~1.5$ nm) due to the structural specificity of R-FeFETs, resulting in RTN. The results of this work provide valuable insight for understanding the reliability issue of R-FeFETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1