深度校准(粗糙)随机波动率模型的近似率

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-19 DOI:10.1137/23m1606769
Francesca Biagini, Lukas Gonon, Niklas Walter
{"title":"深度校准(粗糙)随机波动率模型的近似率","authors":"Francesca Biagini, Lukas Gonon, Niklas Walter","doi":"10.1137/23m1606769","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 734-784, September 2024. <br/> Abstract.We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a [math]-dimensional risky asset as functions of the underlying model parameters, payoff parameters, and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error [math] while the network size grows only subpolynomially in the asset vector dimension [math] and the reciprocal [math] of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, and then we extend these results to the general case by using convergence arguments for the option prices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models\",\"authors\":\"Francesca Biagini, Lukas Gonon, Niklas Walter\",\"doi\":\"10.1137/23m1606769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 734-784, September 2024. <br/> Abstract.We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a [math]-dimensional risky asset as functions of the underlying model parameters, payoff parameters, and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error [math] while the network size grows only subpolynomially in the asset vector dimension [math] and the reciprocal [math] of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, and then we extend these results to the general case by using convergence arguments for the option prices.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1606769\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/23m1606769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 金融数学期刊》,第 15 卷,第 3 期,第 734-784 页,2024 年 9 月。 摘要:我们推导了深度神经网络(DNN)近似[数学]维风险资产期权价格的定量误差边界,它是基础模型参数、报酬参数和初始条件的函数。我们的研究涵盖了马尔可夫性质的一般随机波动率模型以及粗糙的 Bergomi 模型。特别是,在合适的假设条件下,我们证明了 DNN 可以学习到任意小误差[数学]的期权价格,而网络规模的增长仅与资产向量维度[数学]和精度倒数[数学]成亚对数关系。因此,这种近似方法不会受到维度诅咒的影响。由于适用于我们设置的 DNN 的定量近似结果是针对紧凑域上的函数提出的,因此我们首先考虑了资产价格被限制在紧凑集合上的情况,然后通过使用期权价格的收敛论证将这些结果扩展到一般情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models
SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 734-784, September 2024.
Abstract.We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a [math]-dimensional risky asset as functions of the underlying model parameters, payoff parameters, and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error [math] while the network size grows only subpolynomially in the asset vector dimension [math] and the reciprocal [math] of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, and then we extend these results to the general case by using convergence arguments for the option prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1