超轻 M5 气凝胶具有卓越的热稳定性和固有阻燃性能

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-09-11 DOI:10.1002/cssc.202401062
Peiying Hu, Sijia Ge, Siyuan Dou, Zhengqiang Lv, Mengmeng Li, Zhiyang Zhao, Peigen Zhang, Jin Wang, ZhengMing Sun
{"title":"超轻 M5 气凝胶具有卓越的热稳定性和固有阻燃性能","authors":"Peiying Hu, Sijia Ge, Siyuan Dou, Zhengqiang Lv, Mengmeng Li, Zhiyang Zhao, Peigen Zhang, Jin Wang, ZhengMing Sun","doi":"10.1002/cssc.202401062","DOIUrl":null,"url":null,"abstract":"Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 \"super\" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI = 50.3%), 80% compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultralight M5 aerogels with superior thermal stability and inherent flame retardancy\",\"authors\":\"Peiying Hu, Sijia Ge, Siyuan Dou, Zhengqiang Lv, Mengmeng Li, Zhiyang Zhao, Peigen Zhang, Jin Wang, ZhengMing Sun\",\"doi\":\"10.1002/cssc.202401062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 \\\"super\\\" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI = 50.3%), 80% compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401062\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401062","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超轻材料往往面临着在低密度、高孔隙率、高机械刚度、高热稳定性和环境稳定性以及低导热性之间取得平衡的严峻挑战。本研究介绍了一种合成高性能聚合物气凝胶的创新方法,以应对这一挑战。具体来说,我们详细介绍了聚(2,5-二羟基-1,4-亚苯基吡啶二咪唑)(PIPD 或 M5)气凝胶的生产过程。该工艺包括将 M5 "超级 "纤维化学剥离成纳米纤维,进行溶胶-凝胶转变,然后进行冷冻干燥和热退火。M5 气凝胶超越了现有的聚合物气凝胶,具有 6.03 mg cm-3 的超轻密度、32 mW m-1 K-1 的热导率、固有阻燃性(LOI = 50.3%)、80% 的压缩回弹性、462.1 m2 g-1 的高比表面积和高达 463 °C 的出色热稳定性。这些多方面的特性使 M5 气凝胶成为轻质隔热材料中的佼佼者,证明了高性能聚合物组装单元在气凝胶设计中的战略性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultralight M5 aerogels with superior thermal stability and inherent flame retardancy
Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels. This process involves chemically stripping M5 "super" fibers into nanofibers, undergoing a Sol-Gel transition, followed by freeze-drying and subsequent thermal annealing. The M5 aerogels excel beyond existing polymer aerogels, boasting an ultralight density of 6.03 mg cm-3, superior thermal insulation with thermal conductivity at 32 mW m-1 K-1, inherent flame retardancy (LOI = 50.3%), 80% compression resilience, a high specific surface area of 462.1 m2 g-1, and outstanding thermal stability up to 463 °C. These multi-faceted properties position the M5 aerogel as a front-runner in lightweight insulation materials, demonstrating the strategic use of high-performance polymer assembly units in aerogel design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Challenges and Modification Strategies on High-voltage Layered Oxide Cathode for Sodium-Ion Batteries. One-pot, Solvent Free Synthesis of 2,5-Furandicarboxylic Acid from Deep Eutectic Mixtures of Sugars as Mediated by Bifunctional Catalyst. Scalable Li-Ion Battery with Metal/Metal Oxide Sulfur Cathode and Lithiated Silicon Oxide/Carbon Anode. Selective Covalent Basal Plane Modification as a Probe of Hydroxide Ion Conduction Pathways in Magnesium Aluminum Layered Double Hydroxides. Metal Doping Regulates Electrocatalysts Restructuring During Oxygen Evolution Reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1