Paul Kuberry, Pavel Bochev, Jacob Koester, Nathaniel Trask
{"title":"用于任意网格上稳健有限元分析的非连续分片多项式广义移动最小二乘法方案","authors":"Paul Kuberry, Pavel Bochev, Jacob Koester, Nathaniel Trask","doi":"10.1007/s00366-024-02036-5","DOIUrl":null,"url":null,"abstract":"<p>A variational approach is developed with a meshless discretization to enable accurate and robust numerical simulation of partial differential equations for meshes that are of poor quality. Traditional finite element methods use the mesh to both discretize the geometric domain and to define the finite element shape functions. The latter creates a dependence between the quality of the mesh and the properties of the finite element basis that may adversely affect the accuracy of the discretized problem. We propose a new approach for defining finite element shape functions that breaks this dependence and separates mesh quality from the discretization quality, which we call discontinuous piecewise polynomial generalized moving least squares (DPP-GMLS). At the core of the approach is a meshless definition of the shape functions, which limits the purpose of the mesh to representing the geometric domain and integrating the basis functions without having any role in their approximation quality. The resulting non-conforming space can be utilized within a standard discontinuous Galerkin framework, providing a rigorous foundation for solving partial differential equations on low-quality meshes. We present a collection of numerical experiments demonstrating our approach in a wide range of settings: strongly coercive elliptic problems, linear elasticity in the compressible regime, and the stationary Stokes problem. We demonstrate convergence for all problems and stability for element pairs for problems which usually require inf-sup compatibility for conforming methods, also referring to a minor modification possible through the symmetric interior penalty Galerkin framework for stabilizing element pairs that would otherwise be traditionally unstable. Mesh robustness is particularly critical for elasticity, and we provide an example that our approach provides a greater than 5<span>\\(\\times\\)</span> improvement in accuracy and allows for taking an 8<span>\\(\\times\\)</span> larger stable timestep for a highly deformed mesh, compared to the continuous Galerkin finite element method.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"23 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A discontinuous piecewise polynomial generalized moving least squares scheme for robust finite element analysis on arbitrary grids\",\"authors\":\"Paul Kuberry, Pavel Bochev, Jacob Koester, Nathaniel Trask\",\"doi\":\"10.1007/s00366-024-02036-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A variational approach is developed with a meshless discretization to enable accurate and robust numerical simulation of partial differential equations for meshes that are of poor quality. Traditional finite element methods use the mesh to both discretize the geometric domain and to define the finite element shape functions. The latter creates a dependence between the quality of the mesh and the properties of the finite element basis that may adversely affect the accuracy of the discretized problem. We propose a new approach for defining finite element shape functions that breaks this dependence and separates mesh quality from the discretization quality, which we call discontinuous piecewise polynomial generalized moving least squares (DPP-GMLS). At the core of the approach is a meshless definition of the shape functions, which limits the purpose of the mesh to representing the geometric domain and integrating the basis functions without having any role in their approximation quality. The resulting non-conforming space can be utilized within a standard discontinuous Galerkin framework, providing a rigorous foundation for solving partial differential equations on low-quality meshes. We present a collection of numerical experiments demonstrating our approach in a wide range of settings: strongly coercive elliptic problems, linear elasticity in the compressible regime, and the stationary Stokes problem. We demonstrate convergence for all problems and stability for element pairs for problems which usually require inf-sup compatibility for conforming methods, also referring to a minor modification possible through the symmetric interior penalty Galerkin framework for stabilizing element pairs that would otherwise be traditionally unstable. Mesh robustness is particularly critical for elasticity, and we provide an example that our approach provides a greater than 5<span>\\\\(\\\\times\\\\)</span> improvement in accuracy and allows for taking an 8<span>\\\\(\\\\times\\\\)</span> larger stable timestep for a highly deformed mesh, compared to the continuous Galerkin finite element method.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02036-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02036-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A discontinuous piecewise polynomial generalized moving least squares scheme for robust finite element analysis on arbitrary grids
A variational approach is developed with a meshless discretization to enable accurate and robust numerical simulation of partial differential equations for meshes that are of poor quality. Traditional finite element methods use the mesh to both discretize the geometric domain and to define the finite element shape functions. The latter creates a dependence between the quality of the mesh and the properties of the finite element basis that may adversely affect the accuracy of the discretized problem. We propose a new approach for defining finite element shape functions that breaks this dependence and separates mesh quality from the discretization quality, which we call discontinuous piecewise polynomial generalized moving least squares (DPP-GMLS). At the core of the approach is a meshless definition of the shape functions, which limits the purpose of the mesh to representing the geometric domain and integrating the basis functions without having any role in their approximation quality. The resulting non-conforming space can be utilized within a standard discontinuous Galerkin framework, providing a rigorous foundation for solving partial differential equations on low-quality meshes. We present a collection of numerical experiments demonstrating our approach in a wide range of settings: strongly coercive elliptic problems, linear elasticity in the compressible regime, and the stationary Stokes problem. We demonstrate convergence for all problems and stability for element pairs for problems which usually require inf-sup compatibility for conforming methods, also referring to a minor modification possible through the symmetric interior penalty Galerkin framework for stabilizing element pairs that would otherwise be traditionally unstable. Mesh robustness is particularly critical for elasticity, and we provide an example that our approach provides a greater than 5\(\times\) improvement in accuracy and allows for taking an 8\(\times\) larger stable timestep for a highly deformed mesh, compared to the continuous Galerkin finite element method.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.