Claudia Cortimiglia, Javier Alonso-Del-Real, Mireya Viviana Belloso Daza, Amparo Querol, Giovanni Iacono, Pier Sandro Cocconcelli
{"title":"评估基于基因组的平均核苷酸同一性计算方法,以鉴定 12 个酵母菌种","authors":"Claudia Cortimiglia, Javier Alonso-Del-Real, Mireya Viviana Belloso Daza, Amparo Querol, Giovanni Iacono, Pier Sandro Cocconcelli","doi":"10.3390/jof10090646","DOIUrl":null,"url":null,"abstract":"Classifying a yeast strain into a recognized species is not always straightforward. Currently, the taxonomic delineation of yeast strains involves multiple approaches covering phenotypic characteristics and molecular methodologies, including genome-based analysis. The aim of this study was to evaluate the suitability of the Average Nucleotide Identity (ANI) calculation through FastANI, a tool created for bacterial species identification, for the assignment of strains to some yeast species. FastANI, the alignment of in silico-extracted D1/D2 sequences of LSU rRNA, and multiple alignments of orthologous genes (MAOG) were employed to analyze 644 assemblies from 12 yeast genera, encompassing various species, and on a dataset of hybrid Saccharomyces species. Overall, the analysis showed high consistency between results obtained with FastANI and MAOG, although, FastANI proved to be more discriminating than the other two methods applied to genomic sequences. In particular, FastANI was effective in distinguishing between strains belonging to different species, defining clear boundaries between them (cutoff: 94–96%). Our results show that FastANI is a reliable method for attributing a known yeast species to a particular strain. Moreover, although hybridization events make species discrimination more complex, it was revealed to be useful in the identification of these cases. We suggest its inclusion as a key component in a comprehensive approach to species delineation. Using this approach with a larger number of yeasts would validate it as a rapid technique to identify yeasts based on whole genome sequences.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species\",\"authors\":\"Claudia Cortimiglia, Javier Alonso-Del-Real, Mireya Viviana Belloso Daza, Amparo Querol, Giovanni Iacono, Pier Sandro Cocconcelli\",\"doi\":\"10.3390/jof10090646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying a yeast strain into a recognized species is not always straightforward. Currently, the taxonomic delineation of yeast strains involves multiple approaches covering phenotypic characteristics and molecular methodologies, including genome-based analysis. The aim of this study was to evaluate the suitability of the Average Nucleotide Identity (ANI) calculation through FastANI, a tool created for bacterial species identification, for the assignment of strains to some yeast species. FastANI, the alignment of in silico-extracted D1/D2 sequences of LSU rRNA, and multiple alignments of orthologous genes (MAOG) were employed to analyze 644 assemblies from 12 yeast genera, encompassing various species, and on a dataset of hybrid Saccharomyces species. Overall, the analysis showed high consistency between results obtained with FastANI and MAOG, although, FastANI proved to be more discriminating than the other two methods applied to genomic sequences. In particular, FastANI was effective in distinguishing between strains belonging to different species, defining clear boundaries between them (cutoff: 94–96%). Our results show that FastANI is a reliable method for attributing a known yeast species to a particular strain. Moreover, although hybridization events make species discrimination more complex, it was revealed to be useful in the identification of these cases. We suggest its inclusion as a key component in a comprehensive approach to species delineation. Using this approach with a larger number of yeasts would validate it as a rapid technique to identify yeasts based on whole genome sequences.\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof10090646\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10090646","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species
Classifying a yeast strain into a recognized species is not always straightforward. Currently, the taxonomic delineation of yeast strains involves multiple approaches covering phenotypic characteristics and molecular methodologies, including genome-based analysis. The aim of this study was to evaluate the suitability of the Average Nucleotide Identity (ANI) calculation through FastANI, a tool created for bacterial species identification, for the assignment of strains to some yeast species. FastANI, the alignment of in silico-extracted D1/D2 sequences of LSU rRNA, and multiple alignments of orthologous genes (MAOG) were employed to analyze 644 assemblies from 12 yeast genera, encompassing various species, and on a dataset of hybrid Saccharomyces species. Overall, the analysis showed high consistency between results obtained with FastANI and MAOG, although, FastANI proved to be more discriminating than the other two methods applied to genomic sequences. In particular, FastANI was effective in distinguishing between strains belonging to different species, defining clear boundaries between them (cutoff: 94–96%). Our results show that FastANI is a reliable method for attributing a known yeast species to a particular strain. Moreover, although hybridization events make species discrimination more complex, it was revealed to be useful in the identification of these cases. We suggest its inclusion as a key component in a comprehensive approach to species delineation. Using this approach with a larger number of yeasts would validate it as a rapid technique to identify yeasts based on whole genome sequences.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.