测量依赖性会影响量子网络的安全性

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Annalen der Physik Pub Date : 2024-09-10 DOI:10.1002/andp.202400123
Amit Kundu, Debasis Sarkar
{"title":"测量依赖性会影响量子网络的安全性","authors":"Amit Kundu,&nbsp;Debasis Sarkar","doi":"10.1002/andp.202400123","DOIUrl":null,"url":null,"abstract":"<p>Network Nonlocality is an advanced study of quantum nonlocality that comprises network structure beyond Bell's theorem. The development of quantum networks has the potential to bring a lot of technological applications in several quantum information processing tasks. Here, the focus is on how the role of the independence of the measurement choices by the end parties in a network works and can be used to affect the security in a quantum network. In both three-parties two-sources bilocal network and four-parties three-sources star network scenarios, this study is able to show, a practical way to understand the relaxation of the assumptions to enhance a real security protocol if someone wants to breach in a network communication. Theoretically, it have been proved that by relaxing the independence of the measurement choices of only one end party, a Standard Network Nonlocality (SNN) and more stronger Full Network Nonlocality (FNN) can be created and the maximum quantum violation by the classical no-signalling local model can be obtained. The distinguish between two types of network nonlocality, SNN and FNN, can also be made. It has been shown that FNN is a stronger correlation than SNN in the sense that the former comes in a scenario where all the sources must be nonlocal in nature.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement Dependence can Affect Security in a Quantum Network\",\"authors\":\"Amit Kundu,&nbsp;Debasis Sarkar\",\"doi\":\"10.1002/andp.202400123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network Nonlocality is an advanced study of quantum nonlocality that comprises network structure beyond Bell's theorem. The development of quantum networks has the potential to bring a lot of technological applications in several quantum information processing tasks. Here, the focus is on how the role of the independence of the measurement choices by the end parties in a network works and can be used to affect the security in a quantum network. In both three-parties two-sources bilocal network and four-parties three-sources star network scenarios, this study is able to show, a practical way to understand the relaxation of the assumptions to enhance a real security protocol if someone wants to breach in a network communication. Theoretically, it have been proved that by relaxing the independence of the measurement choices of only one end party, a Standard Network Nonlocality (SNN) and more stronger Full Network Nonlocality (FNN) can be created and the maximum quantum violation by the classical no-signalling local model can be obtained. The distinguish between two types of network nonlocality, SNN and FNN, can also be made. It has been shown that FNN is a stronger correlation than SNN in the sense that the former comes in a scenario where all the sources must be nonlocal in nature.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"536 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400123\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400123","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

网络非局域性是对量子非局域性的高级研究,包括超越贝尔定理的网络结构。量子网络的发展有可能在多项量子信息处理任务中带来大量技术应用。这里的重点是网络终端各方测量选择的独立性如何发挥作用,以及如何用来影响量子网络的安全性。在三方两源双局域网络和四方三源星型网络两种情况下,本研究都能以实用的方式说明,如果有人想破坏网络通信,如何通过放宽假设来增强真实的安全协议。理论上,研究证明,通过放宽只有一个终端方测量选择的独立性,可以创建标准网络非局域性(SNN)和更强的全网络非局域性(FNN),并获得经典无信令局部模型的最大量子违规。我们还可以区分 SNN 和 FNN 两种网络非局域性。研究表明,FNN 是一种比 SNN 更强的相关性,因为前者是在所有来源都必须是非局域的情况下产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement Dependence can Affect Security in a Quantum Network

Network Nonlocality is an advanced study of quantum nonlocality that comprises network structure beyond Bell's theorem. The development of quantum networks has the potential to bring a lot of technological applications in several quantum information processing tasks. Here, the focus is on how the role of the independence of the measurement choices by the end parties in a network works and can be used to affect the security in a quantum network. In both three-parties two-sources bilocal network and four-parties three-sources star network scenarios, this study is able to show, a practical way to understand the relaxation of the assumptions to enhance a real security protocol if someone wants to breach in a network communication. Theoretically, it have been proved that by relaxing the independence of the measurement choices of only one end party, a Standard Network Nonlocality (SNN) and more stronger Full Network Nonlocality (FNN) can be created and the maximum quantum violation by the classical no-signalling local model can be obtained. The distinguish between two types of network nonlocality, SNN and FNN, can also be made. It has been shown that FNN is a stronger correlation than SNN in the sense that the former comes in a scenario where all the sources must be nonlocal in nature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
期刊最新文献
(Ann. Phys. 11/2024) (Ann. Phys. 11/2024) Masthead: Ann. Phys. 11/2024 (Ann. Phys. 10/2024) Masthead: Ann. Phys. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1