Jianghao Li, Ziheng Li, Yingce Duan, Chengwei Liu, Meixia Yan
{"title":"Fomitopsis betulina 的次级代谢物:化学结构、生物活性和应用前景","authors":"Jianghao Li, Ziheng Li, Yingce Duan, Chengwei Liu, Meixia Yan","doi":"10.3390/jof10090616","DOIUrl":null,"url":null,"abstract":"Fomitopsis betulina, as a macrofungus with both medicinal and dietary applications, is renowned for its rich content of bioactive substances. The recent advancements in research have significantly enhanced our understanding of its polysaccharides, cellulose-degrading enzymes, and wide range of secondary metabolites. This paper provides a comprehensive review of the artificial cultivation techniques and the chemical profiling of over 100 secondary metabolites identified in F. betulina, including terpenoids, phenols, and various other classes. These compounds exhibit notable pharmacological activities, such as anti-cancer, anti-inflammatory, antimicrobial, antiviral, and anti-malarial effects. Moreover, this review delves into the genomic analysis of F. betulina, focusing on the prediction and classification of terpene synthases, which play a crucial role in the biosynthesis of these bioactive compounds. This insight is instrumental for potentially facilitating future biochemical studies and pharmaceutical applications. Through this review, we aim to solidify the foundation for future in-depth studies and the development of new drugs derived from this promising natural resource.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secondary Metabolites of Fomitopsis betulina: Chemical Structures, Biological Activity and Application Prospects\",\"authors\":\"Jianghao Li, Ziheng Li, Yingce Duan, Chengwei Liu, Meixia Yan\",\"doi\":\"10.3390/jof10090616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fomitopsis betulina, as a macrofungus with both medicinal and dietary applications, is renowned for its rich content of bioactive substances. The recent advancements in research have significantly enhanced our understanding of its polysaccharides, cellulose-degrading enzymes, and wide range of secondary metabolites. This paper provides a comprehensive review of the artificial cultivation techniques and the chemical profiling of over 100 secondary metabolites identified in F. betulina, including terpenoids, phenols, and various other classes. These compounds exhibit notable pharmacological activities, such as anti-cancer, anti-inflammatory, antimicrobial, antiviral, and anti-malarial effects. Moreover, this review delves into the genomic analysis of F. betulina, focusing on the prediction and classification of terpene synthases, which play a crucial role in the biosynthesis of these bioactive compounds. This insight is instrumental for potentially facilitating future biochemical studies and pharmaceutical applications. Through this review, we aim to solidify the foundation for future in-depth studies and the development of new drugs derived from this promising natural resource.\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof10090616\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10090616","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Secondary Metabolites of Fomitopsis betulina: Chemical Structures, Biological Activity and Application Prospects
Fomitopsis betulina, as a macrofungus with both medicinal and dietary applications, is renowned for its rich content of bioactive substances. The recent advancements in research have significantly enhanced our understanding of its polysaccharides, cellulose-degrading enzymes, and wide range of secondary metabolites. This paper provides a comprehensive review of the artificial cultivation techniques and the chemical profiling of over 100 secondary metabolites identified in F. betulina, including terpenoids, phenols, and various other classes. These compounds exhibit notable pharmacological activities, such as anti-cancer, anti-inflammatory, antimicrobial, antiviral, and anti-malarial effects. Moreover, this review delves into the genomic analysis of F. betulina, focusing on the prediction and classification of terpene synthases, which play a crucial role in the biosynthesis of these bioactive compounds. This insight is instrumental for potentially facilitating future biochemical studies and pharmaceutical applications. Through this review, we aim to solidify the foundation for future in-depth studies and the development of new drugs derived from this promising natural resource.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.