自旋电流和轨道电流共同诱导增强磁阻

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIP Advances Pub Date : 2024-09-06 DOI:10.1063/5.0231164
Shuyi Yang, Jinnan Liu, Huan Liu, Yongji Li, Wei Zhang, Zhongming Zeng, Zhiyong Quan
{"title":"自旋电流和轨道电流共同诱导增强磁阻","authors":"Shuyi Yang, Jinnan Liu, Huan Liu, Yongji Li, Wei Zhang, Zhongming Zeng, Zhiyong Quan","doi":"10.1063/5.0231164","DOIUrl":null,"url":null,"abstract":"Orbital currents in light metals or metal oxides without the strong spin–orbit coupling have become an important means to achieve low-power magnetization switching in spin–orbitronic devices. The orbital magnetoresistance (OMR) originated from orbital current represents a useful strategy to explore the interaction between the orbital angular momentum (OAM) and the local magnetic moment. However, systematic research works on the enhancement of OMR and the mechanism of OAM transport are seldom reported. In this study, we report a synergistically enhanced magnetoresistance effect induced by spin and orbital currents in perpendicularly magnetized Pt/Co/Cu–CuOx systems. A maximum room temperature magnetoresistance of 0.38% was observed, exceeding the spin Hall magnetoresistance (SMR) of heavy metal-based heterostructures by one order of magnitude. The enhancement of magnetoresistance is attributed to the contributions from the OMR generated by the orbital Rashba effect at the Cu/CuOx interface and SMR induced by the spin Hall effect in heavy metal Pt. These results provide a pathway to understanding of the OAM transport in magnetic multilayer films and contribute to the design and realization of energy-efficient spin–orbitronic devices.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced magnetoresistance induced collaboratively by spin and orbital currents\",\"authors\":\"Shuyi Yang, Jinnan Liu, Huan Liu, Yongji Li, Wei Zhang, Zhongming Zeng, Zhiyong Quan\",\"doi\":\"10.1063/5.0231164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orbital currents in light metals or metal oxides without the strong spin–orbit coupling have become an important means to achieve low-power magnetization switching in spin–orbitronic devices. The orbital magnetoresistance (OMR) originated from orbital current represents a useful strategy to explore the interaction between the orbital angular momentum (OAM) and the local magnetic moment. However, systematic research works on the enhancement of OMR and the mechanism of OAM transport are seldom reported. In this study, we report a synergistically enhanced magnetoresistance effect induced by spin and orbital currents in perpendicularly magnetized Pt/Co/Cu–CuOx systems. A maximum room temperature magnetoresistance of 0.38% was observed, exceeding the spin Hall magnetoresistance (SMR) of heavy metal-based heterostructures by one order of magnitude. The enhancement of magnetoresistance is attributed to the contributions from the OMR generated by the orbital Rashba effect at the Cu/CuOx interface and SMR induced by the spin Hall effect in heavy metal Pt. These results provide a pathway to understanding of the OAM transport in magnetic multilayer films and contribute to the design and realization of energy-efficient spin–orbitronic devices.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231164\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0231164","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

没有强自旋轨道耦合的轻金属或金属氧化物中的轨道电流已成为自旋轨道器件中实现低功耗磁化开关的重要手段。轨道电流产生的轨道磁阻(OMR)是探索轨道角动量(OAM)与局部磁矩之间相互作用的有效策略。然而,有关增强轨道磁阻和轨道角动量传输机制的系统研究成果却鲜有报道。在本研究中,我们报告了在垂直磁化的 Pt/Co/Cu-CuOx 系统中,自旋电流和轨道电流诱导的协同增强磁阻效应。观察到的最大室温磁阻为 0.38%,比重金属基异质结构的自旋霍尔磁阻(SMR)高出一个数量级。磁阻的增强归因于由 Cu/CuOx 界面的轨道拉什巴效应产生的 OMR 和由重金属 Pt 中的自旋霍尔效应诱导的 SMR 的贡献。这些结果为理解磁性多层薄膜中的 OAM 传输提供了一条途径,并有助于设计和实现高能效的自旋轨道器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced magnetoresistance induced collaboratively by spin and orbital currents
Orbital currents in light metals or metal oxides without the strong spin–orbit coupling have become an important means to achieve low-power magnetization switching in spin–orbitronic devices. The orbital magnetoresistance (OMR) originated from orbital current represents a useful strategy to explore the interaction between the orbital angular momentum (OAM) and the local magnetic moment. However, systematic research works on the enhancement of OMR and the mechanism of OAM transport are seldom reported. In this study, we report a synergistically enhanced magnetoresistance effect induced by spin and orbital currents in perpendicularly magnetized Pt/Co/Cu–CuOx systems. A maximum room temperature magnetoresistance of 0.38% was observed, exceeding the spin Hall magnetoresistance (SMR) of heavy metal-based heterostructures by one order of magnitude. The enhancement of magnetoresistance is attributed to the contributions from the OMR generated by the orbital Rashba effect at the Cu/CuOx interface and SMR induced by the spin Hall effect in heavy metal Pt. These results provide a pathway to understanding of the OAM transport in magnetic multilayer films and contribute to the design and realization of energy-efficient spin–orbitronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
期刊最新文献
Mathematical analysis of the Wiener processes with time-delayed feedback Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation Design and simulation of a Ka-band frequency doubling gyroklystron amplifier Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites Decomposition characteristics and influencing mechanisms of C4F7N/CO2 gas with different metal materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1