N. P. Bhagya, G. K. Prashanth, B. N. Veerabhadraswamy, Srilatha Rao, S. R. Yashodha, H. S. Yogananda, H. S. Lalithamba
{"title":"优化吸附效率:用于高效去除孔雀石绿染料的掺锌钛酸锶的合成与表征","authors":"N. P. Bhagya, G. K. Prashanth, B. N. Veerabhadraswamy, Srilatha Rao, S. R. Yashodha, H. S. Yogananda, H. S. Lalithamba","doi":"10.1007/s11243-024-00606-6","DOIUrl":null,"url":null,"abstract":"<p>The current study describes the use of an extremely effective adsorbent for the removal of dye from an aqueous solution. This work focuses on the prospective use of zinc-doped strontium titanate (Zn<sup>2+</sup>:ST) nano-powder to remove the malachite green (MG) from an aqueous medium. Optimization of experimental conditions to find the maximum dye adsorption is studied in detail. The Zn<sup>2+</sup>:ST nano-powder was synthesized using the low-temperature solution combustion method and extensively characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR and UV–visible spectroscopy. PXRD analysis revealed a cubic structure of Zn<sup>2+</sup>:ST, closely matching ICDD card No. 35-734, indicating a space group of pm-3 m (No. 221). The average crystallite size was found to be 20–30 nm using the Scherrer formula. SEM images depicted the particles’ irregular shape. UV–visible spectroscopy showed the band gap of 3.1 eV and FTIR confirmed formation of M–O bond at 582 cm<sup>−1</sup> and 868 cm<sup>−1</sup> for SrO and ZnO, respectively. Optimal adsorption parameters were determined by varying dosage, stirring rate, and pH. Under these optimized conditions, for 10 ppm of stock solution, an impressive 98% adsorption efficiency was achieved with a 10 mg/L dose, 30-min contact time, and pH 10. Adsorption isotherms were fitted to the Langmuir model, showing a favorable correlation between experimental data and the model. This study provides valuable insights into the potential application of zinc-doped ST nano-powder for efficiently removing malachite green from water solutions.</p>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"40 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing adsorption efficiency: synthesis and characterization of zinc-doped strontium titanate for highly effective removal of malachite green dye\",\"authors\":\"N. P. Bhagya, G. K. Prashanth, B. N. Veerabhadraswamy, Srilatha Rao, S. R. Yashodha, H. S. Yogananda, H. S. Lalithamba\",\"doi\":\"10.1007/s11243-024-00606-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current study describes the use of an extremely effective adsorbent for the removal of dye from an aqueous solution. This work focuses on the prospective use of zinc-doped strontium titanate (Zn<sup>2+</sup>:ST) nano-powder to remove the malachite green (MG) from an aqueous medium. Optimization of experimental conditions to find the maximum dye adsorption is studied in detail. The Zn<sup>2+</sup>:ST nano-powder was synthesized using the low-temperature solution combustion method and extensively characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR and UV–visible spectroscopy. PXRD analysis revealed a cubic structure of Zn<sup>2+</sup>:ST, closely matching ICDD card No. 35-734, indicating a space group of pm-3 m (No. 221). The average crystallite size was found to be 20–30 nm using the Scherrer formula. SEM images depicted the particles’ irregular shape. UV–visible spectroscopy showed the band gap of 3.1 eV and FTIR confirmed formation of M–O bond at 582 cm<sup>−1</sup> and 868 cm<sup>−1</sup> for SrO and ZnO, respectively. Optimal adsorption parameters were determined by varying dosage, stirring rate, and pH. Under these optimized conditions, for 10 ppm of stock solution, an impressive 98% adsorption efficiency was achieved with a 10 mg/L dose, 30-min contact time, and pH 10. Adsorption isotherms were fitted to the Langmuir model, showing a favorable correlation between experimental data and the model. This study provides valuable insights into the potential application of zinc-doped ST nano-powder for efficiently removing malachite green from water solutions.</p>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11243-024-00606-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11243-024-00606-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Optimizing adsorption efficiency: synthesis and characterization of zinc-doped strontium titanate for highly effective removal of malachite green dye
The current study describes the use of an extremely effective adsorbent for the removal of dye from an aqueous solution. This work focuses on the prospective use of zinc-doped strontium titanate (Zn2+:ST) nano-powder to remove the malachite green (MG) from an aqueous medium. Optimization of experimental conditions to find the maximum dye adsorption is studied in detail. The Zn2+:ST nano-powder was synthesized using the low-temperature solution combustion method and extensively characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR and UV–visible spectroscopy. PXRD analysis revealed a cubic structure of Zn2+:ST, closely matching ICDD card No. 35-734, indicating a space group of pm-3 m (No. 221). The average crystallite size was found to be 20–30 nm using the Scherrer formula. SEM images depicted the particles’ irregular shape. UV–visible spectroscopy showed the band gap of 3.1 eV and FTIR confirmed formation of M–O bond at 582 cm−1 and 868 cm−1 for SrO and ZnO, respectively. Optimal adsorption parameters were determined by varying dosage, stirring rate, and pH. Under these optimized conditions, for 10 ppm of stock solution, an impressive 98% adsorption efficiency was achieved with a 10 mg/L dose, 30-min contact time, and pH 10. Adsorption isotherms were fitted to the Langmuir model, showing a favorable correlation between experimental data and the model. This study provides valuable insights into the potential application of zinc-doped ST nano-powder for efficiently removing malachite green from water solutions.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.