通过 ANN 和熵集成 COCOSO 优化提高 Mg/FeCoCrNiMn HEA 复合材料的线切割加工性能

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIP Advances Pub Date : 2024-09-11 DOI:10.1063/5.0226558
P. M. Gopal, V. Kavimani, S. Sudhagar, Debabrata Barik, Prabhu Paramasivam, Harinadh Vemanaboina
{"title":"通过 ANN 和熵集成 COCOSO 优化提高 Mg/FeCoCrNiMn HEA 复合材料的线切割加工性能","authors":"P. M. Gopal, V. Kavimani, S. Sudhagar, Debabrata Barik, Prabhu Paramasivam, Harinadh Vemanaboina","doi":"10.1063/5.0226558","DOIUrl":null,"url":null,"abstract":"The aim of this experimental work is to find the ideal wire electric discharge machining (WEDM) parameter combination for processing a novel FeCoCrNiMn High Entropy Alloy (HEA)-reinforced magnesium composite. This composite is developed with varying weights of FeCoCrNiMn at 5%, 10%, and 15% through powder metallurgy. Experiments are performed to examine the effects of HEA and wire-EDM variables on surface roughness (Ra) and kerf width (KW) using Taguchi’s L27 orthogonal array. The hybrid ENTROPY-COCOSO (Combined Compromise Solution) methodology is used for multiple objective optimizations after the Taguchi method for optimization. The most significant constraints on Ra and KW are found to be pulse ON time and current. Wider kerfs and rougher surfaces are the result of longer pulse ON times and higher current. The ideal input parameters recommended by ENTROPY-COCOSO for minimal Ra and KW are 2 A of current, 20 µs of pulse ON time, 25 µs of pulse OFF time, and 4 mm/min of wire feed rate. To predict outcomes, both linear regression models and artificial neural networks (ANNs) are used, and the results are compared with experimental data. The results are validated by the fact that ANN predictions closely match experimental data with minimal deviation.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"184 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing WEDM performance on Mg/FeCoCrNiMn HEA composites through ANN and entropy integrated COCOSO optimization\",\"authors\":\"P. M. Gopal, V. Kavimani, S. Sudhagar, Debabrata Barik, Prabhu Paramasivam, Harinadh Vemanaboina\",\"doi\":\"10.1063/5.0226558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this experimental work is to find the ideal wire electric discharge machining (WEDM) parameter combination for processing a novel FeCoCrNiMn High Entropy Alloy (HEA)-reinforced magnesium composite. This composite is developed with varying weights of FeCoCrNiMn at 5%, 10%, and 15% through powder metallurgy. Experiments are performed to examine the effects of HEA and wire-EDM variables on surface roughness (Ra) and kerf width (KW) using Taguchi’s L27 orthogonal array. The hybrid ENTROPY-COCOSO (Combined Compromise Solution) methodology is used for multiple objective optimizations after the Taguchi method for optimization. The most significant constraints on Ra and KW are found to be pulse ON time and current. Wider kerfs and rougher surfaces are the result of longer pulse ON times and higher current. The ideal input parameters recommended by ENTROPY-COCOSO for minimal Ra and KW are 2 A of current, 20 µs of pulse ON time, 25 µs of pulse OFF time, and 4 mm/min of wire feed rate. To predict outcomes, both linear regression models and artificial neural networks (ANNs) are used, and the results are compared with experimental data. The results are validated by the fact that ANN predictions closely match experimental data with minimal deviation.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":\"184 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226558\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0226558","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项实验工作的目的是找到理想的线切割加工(WEDM)参数组合,以加工新型铁钴铬镍锰高熵合金(HEA)增强镁复合材料。这种复合材料是通过粉末冶金法研制的,其中铁钴铬镍锰的重量分别为 5%、10% 和 15%。实验采用田口 L27 正交阵列来检验 HEA 和线切割变量对表面粗糙度 (Ra) 和切口宽度 (KW) 的影响。在采用田口方法进行优化后,使用混合 ENTROPY-COCOSO(组合折衷方案)方法进行多目标优化。发现对 Ra 和 KW 最重要的限制因素是脉冲接通时间和电流。更长的脉冲开启时间和更大的电流会导致更宽的切口和更粗糙的表面。ENTROPY-COCOSO 推荐的最小 Ra 和 KW 的理想输入参数为:2 A 电流、20 µs 脉冲接通时间、25 µs 脉冲关断时间和 4 mm/min 的送丝速度。为了预测结果,使用了线性回归模型和人工神经网络(ANN),并将结果与实验数据进行了比较。人工神经网络的预测结果与实验数据非常吻合,偏差极小,从而验证了预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing WEDM performance on Mg/FeCoCrNiMn HEA composites through ANN and entropy integrated COCOSO optimization
The aim of this experimental work is to find the ideal wire electric discharge machining (WEDM) parameter combination for processing a novel FeCoCrNiMn High Entropy Alloy (HEA)-reinforced magnesium composite. This composite is developed with varying weights of FeCoCrNiMn at 5%, 10%, and 15% through powder metallurgy. Experiments are performed to examine the effects of HEA and wire-EDM variables on surface roughness (Ra) and kerf width (KW) using Taguchi’s L27 orthogonal array. The hybrid ENTROPY-COCOSO (Combined Compromise Solution) methodology is used for multiple objective optimizations after the Taguchi method for optimization. The most significant constraints on Ra and KW are found to be pulse ON time and current. Wider kerfs and rougher surfaces are the result of longer pulse ON times and higher current. The ideal input parameters recommended by ENTROPY-COCOSO for minimal Ra and KW are 2 A of current, 20 µs of pulse ON time, 25 µs of pulse OFF time, and 4 mm/min of wire feed rate. To predict outcomes, both linear regression models and artificial neural networks (ANNs) are used, and the results are compared with experimental data. The results are validated by the fact that ANN predictions closely match experimental data with minimal deviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
期刊最新文献
Dimensional analysis of diffusive association rate equations. Mathematical analysis of the Wiener processes with time-delayed feedback Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation Design and simulation of a Ka-band frequency doubling gyroklystron amplifier Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1