Xiangyu Xu, Xigui Tao, Yingxiang Wu, Yunke Lu, Yan Liu, Ji Zhang, Yushuai Zhang
{"title":"弹丸斜向冲击混凝土目标时的变形特性和影响因素","authors":"Xiangyu Xu, Xigui Tao, Yingxiang Wu, Yunke Lu, Yan Liu, Ji Zhang, Yushuai Zhang","doi":"10.1063/5.0220438","DOIUrl":null,"url":null,"abstract":"The projectile deflects and even ricochets after an oblique impact on the concrete. However, research on the oblique impact of projectiles on concrete targets mainly focuses on oblique penetration and the critical ricochet angle, and there are few experimental studies on ricochets. Deflection and its influencing factors remain undefined. This study conducted experiments and LS-DYNA numerical simulations on projectiles obliquely impacting C60 concrete targets. The experimental research visually revealed deflection and ricochet phenomena after the oblique impact. The ricochet caused by large-angle impacts can effectively reduce the damaged area of concrete targets. Subsequently, the main governing parameters affecting the deflection angle of the projectile were identified through dimensional analysis, and a sensitivity analysis was performed on these parameters using an orthogonal experimental design. On this basis, the influence of the incident angle, impact velocity, and projectile length-to-diameter ratio on the projectile deflection was further clarified. The results showed that the maximum deflection angle was achieved when a 30 mm caliber projectile obliquely impacted a C60 concrete at an incident angle of ∼45°. In the case of ricochets, the deflection angle increased with an increase in the impact velocity and decreased with an increase in the length-to-diameter ratio. This study aids in predicting and controlling projectile deflection and provides a reference for the innovative design of concrete protective structures.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deflection characteristics and influencing factors of projectile oblique impact on concrete targets\",\"authors\":\"Xiangyu Xu, Xigui Tao, Yingxiang Wu, Yunke Lu, Yan Liu, Ji Zhang, Yushuai Zhang\",\"doi\":\"10.1063/5.0220438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The projectile deflects and even ricochets after an oblique impact on the concrete. However, research on the oblique impact of projectiles on concrete targets mainly focuses on oblique penetration and the critical ricochet angle, and there are few experimental studies on ricochets. Deflection and its influencing factors remain undefined. This study conducted experiments and LS-DYNA numerical simulations on projectiles obliquely impacting C60 concrete targets. The experimental research visually revealed deflection and ricochet phenomena after the oblique impact. The ricochet caused by large-angle impacts can effectively reduce the damaged area of concrete targets. Subsequently, the main governing parameters affecting the deflection angle of the projectile were identified through dimensional analysis, and a sensitivity analysis was performed on these parameters using an orthogonal experimental design. On this basis, the influence of the incident angle, impact velocity, and projectile length-to-diameter ratio on the projectile deflection was further clarified. The results showed that the maximum deflection angle was achieved when a 30 mm caliber projectile obliquely impacted a C60 concrete at an incident angle of ∼45°. In the case of ricochets, the deflection angle increased with an increase in the impact velocity and decreased with an increase in the length-to-diameter ratio. This study aids in predicting and controlling projectile deflection and provides a reference for the innovative design of concrete protective structures.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0220438\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0220438","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Deflection characteristics and influencing factors of projectile oblique impact on concrete targets
The projectile deflects and even ricochets after an oblique impact on the concrete. However, research on the oblique impact of projectiles on concrete targets mainly focuses on oblique penetration and the critical ricochet angle, and there are few experimental studies on ricochets. Deflection and its influencing factors remain undefined. This study conducted experiments and LS-DYNA numerical simulations on projectiles obliquely impacting C60 concrete targets. The experimental research visually revealed deflection and ricochet phenomena after the oblique impact. The ricochet caused by large-angle impacts can effectively reduce the damaged area of concrete targets. Subsequently, the main governing parameters affecting the deflection angle of the projectile were identified through dimensional analysis, and a sensitivity analysis was performed on these parameters using an orthogonal experimental design. On this basis, the influence of the incident angle, impact velocity, and projectile length-to-diameter ratio on the projectile deflection was further clarified. The results showed that the maximum deflection angle was achieved when a 30 mm caliber projectile obliquely impacted a C60 concrete at an incident angle of ∼45°. In the case of ricochets, the deflection angle increased with an increase in the impact velocity and decreased with an increase in the length-to-diameter ratio. This study aids in predicting and controlling projectile deflection and provides a reference for the innovative design of concrete protective structures.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.