{"title":"基于(Cs, FA)Pb(I, Br)3的过氧化物硅串联太阳能电池的综合器件建模和性能分析","authors":"Zhenhui Wu, Zhaoyao Pan, Jinpeng Yang","doi":"10.1063/5.0225140","DOIUrl":null,"url":null,"abstract":"The utilization of perovskite films as the top subcell to form a perovskite–silicon tandem solar cell has emerged as an attractive approach to achieve higher power conversion efficiency (PCE) that could surpass the Shockley–Queisser limit for single silicon junction. Despite these efforts, precisely understanding and predicting the underlying mechanism necessary for obtaining higher PCE remains a challenging task. In particular, the absorption due to back electrode reflection during calculations has often been neglected, resulting in an underestimation when comparing theoretical calculations to experimental conditions. In this study, we conduct a comprehensive investigation of perovskite–silicon tandem solar cells with considering the back electrode reflection to study the detailed influence on film quality of perovskite films, where a detailed analysis of multiple factors such as bulk and interface defects, doping levels, and carrier mobility from (Cs, FA)Pb(I, Br)3 has been conducted to unveil their effects on device performance. Our results revealed that lower bulk/interface defect concentrations and higher carrier mobility are critical factors contributing to the best device performance, where the highest PCE would reach up to 37.40%. Further comparison with experimental results also confirms the importance of employing effective methods to reduce surface/interface trap densities in order to enhance overall performance. These findings offer valuable theoretical insights for the guidance of experimental designs of perovskite–silicon tandem solar cells.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive device modeling and performance analysis of (Cs, FA)Pb(I, Br)3 based perovskite–silicon tandem solar cells\",\"authors\":\"Zhenhui Wu, Zhaoyao Pan, Jinpeng Yang\",\"doi\":\"10.1063/5.0225140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of perovskite films as the top subcell to form a perovskite–silicon tandem solar cell has emerged as an attractive approach to achieve higher power conversion efficiency (PCE) that could surpass the Shockley–Queisser limit for single silicon junction. Despite these efforts, precisely understanding and predicting the underlying mechanism necessary for obtaining higher PCE remains a challenging task. In particular, the absorption due to back electrode reflection during calculations has often been neglected, resulting in an underestimation when comparing theoretical calculations to experimental conditions. In this study, we conduct a comprehensive investigation of perovskite–silicon tandem solar cells with considering the back electrode reflection to study the detailed influence on film quality of perovskite films, where a detailed analysis of multiple factors such as bulk and interface defects, doping levels, and carrier mobility from (Cs, FA)Pb(I, Br)3 has been conducted to unveil their effects on device performance. Our results revealed that lower bulk/interface defect concentrations and higher carrier mobility are critical factors contributing to the best device performance, where the highest PCE would reach up to 37.40%. Further comparison with experimental results also confirms the importance of employing effective methods to reduce surface/interface trap densities in order to enhance overall performance. These findings offer valuable theoretical insights for the guidance of experimental designs of perovskite–silicon tandem solar cells.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0225140\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0225140","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comprehensive device modeling and performance analysis of (Cs, FA)Pb(I, Br)3 based perovskite–silicon tandem solar cells
The utilization of perovskite films as the top subcell to form a perovskite–silicon tandem solar cell has emerged as an attractive approach to achieve higher power conversion efficiency (PCE) that could surpass the Shockley–Queisser limit for single silicon junction. Despite these efforts, precisely understanding and predicting the underlying mechanism necessary for obtaining higher PCE remains a challenging task. In particular, the absorption due to back electrode reflection during calculations has often been neglected, resulting in an underestimation when comparing theoretical calculations to experimental conditions. In this study, we conduct a comprehensive investigation of perovskite–silicon tandem solar cells with considering the back electrode reflection to study the detailed influence on film quality of perovskite films, where a detailed analysis of multiple factors such as bulk and interface defects, doping levels, and carrier mobility from (Cs, FA)Pb(I, Br)3 has been conducted to unveil their effects on device performance. Our results revealed that lower bulk/interface defect concentrations and higher carrier mobility are critical factors contributing to the best device performance, where the highest PCE would reach up to 37.40%. Further comparison with experimental results also confirms the importance of employing effective methods to reduce surface/interface trap densities in order to enhance overall performance. These findings offer valuable theoretical insights for the guidance of experimental designs of perovskite–silicon tandem solar cells.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.