酸掺杂诱导相分离,塑造相形态并提高聚合物电解质膜的性能

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-12 DOI:10.1021/acsaem.4c01547
Joseph Jang, Do-Hyung Kim, Chanho Pak, Jae-Suk Lee
{"title":"酸掺杂诱导相分离,塑造相形态并提高聚合物电解质膜的性能","authors":"Joseph Jang, Do-Hyung Kim, Chanho Pak, Jae-Suk Lee","doi":"10.1021/acsaem.4c01547","DOIUrl":null,"url":null,"abstract":"The control of nanostructure and phase morphology within electrolytes is crucial in determining the performance of electrochemical devices, such as high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Random copolymers have been extensively utilized in this field due to their straightforward synthetic methods compared to block copolymers. However, achieving precise control over the nanostructure of these random copolymers is challenging, owing to the irregular distribution of hydrophilic and hydrophobic segments along their backbone. Herein, we introduce the acid doping-induced phase separation of random copolymers containing basic moieties driven by base–acid interaction with phosphoric acid (PA). Small-angle X-ray scattering analysis revealed that increased functionalization led to phase separation and inversion, indicative of dispersed PA distribution, impacting membrane morphology and phase dynamics. The phase morphology control improves proton conductivity and PA retention up to 130% and 260% increases, respectively, resulting in a significant enhancement in power density, a 20% boost to 200 mW/cm<sup>2</sup>.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-Doping Induced Phase Separation for Shaping Phase Morphology and Enhancing Performance of Polymer Electrolyte Membranes\",\"authors\":\"Joseph Jang, Do-Hyung Kim, Chanho Pak, Jae-Suk Lee\",\"doi\":\"10.1021/acsaem.4c01547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of nanostructure and phase morphology within electrolytes is crucial in determining the performance of electrochemical devices, such as high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Random copolymers have been extensively utilized in this field due to their straightforward synthetic methods compared to block copolymers. However, achieving precise control over the nanostructure of these random copolymers is challenging, owing to the irregular distribution of hydrophilic and hydrophobic segments along their backbone. Herein, we introduce the acid doping-induced phase separation of random copolymers containing basic moieties driven by base–acid interaction with phosphoric acid (PA). Small-angle X-ray scattering analysis revealed that increased functionalization led to phase separation and inversion, indicative of dispersed PA distribution, impacting membrane morphology and phase dynamics. The phase morphology control improves proton conductivity and PA retention up to 130% and 260% increases, respectively, resulting in a significant enhancement in power density, a 20% boost to 200 mW/cm<sup>2</sup>.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsaem.4c01547\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01547","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电解质中纳米结构和相形态的控制对于决定高温聚合物电解质膜燃料电池(HT-PEMFCs)等电化学设备的性能至关重要。与嵌段共聚物相比,无规共聚物的合成方法简单,因此在这一领域得到了广泛应用。然而,由于亲水段和疏水段在骨架上的分布不规则,要精确控制这些无规共聚物的纳米结构具有挑战性。在此,我们介绍了由磷酸(PA)的碱-酸相互作用驱动的酸掺杂诱导的含有碱性分子的无规共聚物的相分离。小角 X 射线散射分析表明,功能化程度的提高导致了相分离和反转,表明 PA 分布分散,影响了膜形态和相动力学。相形态控制改善了质子传导性,使 PA 的保留率分别提高了 130% 和 260%,从而显著提高了功率密度,将功率密度提高了 20%,达到 200 mW/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acid-Doping Induced Phase Separation for Shaping Phase Morphology and Enhancing Performance of Polymer Electrolyte Membranes
The control of nanostructure and phase morphology within electrolytes is crucial in determining the performance of electrochemical devices, such as high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Random copolymers have been extensively utilized in this field due to their straightforward synthetic methods compared to block copolymers. However, achieving precise control over the nanostructure of these random copolymers is challenging, owing to the irregular distribution of hydrophilic and hydrophobic segments along their backbone. Herein, we introduce the acid doping-induced phase separation of random copolymers containing basic moieties driven by base–acid interaction with phosphoric acid (PA). Small-angle X-ray scattering analysis revealed that increased functionalization led to phase separation and inversion, indicative of dispersed PA distribution, impacting membrane morphology and phase dynamics. The phase morphology control improves proton conductivity and PA retention up to 130% and 260% increases, respectively, resulting in a significant enhancement in power density, a 20% boost to 200 mW/cm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1