Junxiao Wang, Peng Wu, Xiaoming Zhang, Renjie Xu, Tao Wang
{"title":"基于全卷积神经网络的多源特征点六自由度姿态估计方法","authors":"Junxiao Wang, Peng Wu, Xiaoming Zhang, Renjie Xu, Tao Wang","doi":"10.1007/s10846-024-02154-8","DOIUrl":null,"url":null,"abstract":"<p>An object’s six-degree-of-freedom (6DoF) pose information has great importance in various fields. Existing methods of pose estimation usually detect two-dimensional (2D)-three-dimensional (3D) feature point pairs, and directly estimates the pose information through Perspective-n-Point (PnP) algorithms. However, this approach ignores the spatial association between pixels, making it difficult to obtain high-precision results. In order to apply pose estimation based on deep learning methods to real-world scenarios, we hope to design a method that is robust enough in more complex scenarios. Therefore, we introduce a method for 3D object pose estimation from color images based on farthest point sampling (FPS) and object 3D bounding box. This method detects the 2D projection of 3D feature points through a convolutional neural network, matches it with the 3D model of the object, and then uses the PnP algorithm to restore the feature point pair to the object pose. Due to the global nature of the bounding box, this approach can be considered effective even in partially occluded or complex environments. In addition, we propose a heatmap suppression method based on weighted coordinates to further improve the prediction accuracy of feature points and the accuracy of the PnP algorithm in solving the pose position. Compared with other algorithms, this method has higher accuracy and better robustness. Our method yielded 93.8% of the ADD(-s) metrics on the Linemod dataset and 47.7% of the ADD(-s) metrics on the Occlusion Linemod dataset. These results show that our method is more effective than existing methods in pose estimation of large objects.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"3 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network\",\"authors\":\"Junxiao Wang, Peng Wu, Xiaoming Zhang, Renjie Xu, Tao Wang\",\"doi\":\"10.1007/s10846-024-02154-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An object’s six-degree-of-freedom (6DoF) pose information has great importance in various fields. Existing methods of pose estimation usually detect two-dimensional (2D)-three-dimensional (3D) feature point pairs, and directly estimates the pose information through Perspective-n-Point (PnP) algorithms. However, this approach ignores the spatial association between pixels, making it difficult to obtain high-precision results. In order to apply pose estimation based on deep learning methods to real-world scenarios, we hope to design a method that is robust enough in more complex scenarios. Therefore, we introduce a method for 3D object pose estimation from color images based on farthest point sampling (FPS) and object 3D bounding box. This method detects the 2D projection of 3D feature points through a convolutional neural network, matches it with the 3D model of the object, and then uses the PnP algorithm to restore the feature point pair to the object pose. Due to the global nature of the bounding box, this approach can be considered effective even in partially occluded or complex environments. In addition, we propose a heatmap suppression method based on weighted coordinates to further improve the prediction accuracy of feature points and the accuracy of the PnP algorithm in solving the pose position. Compared with other algorithms, this method has higher accuracy and better robustness. Our method yielded 93.8% of the ADD(-s) metrics on the Linemod dataset and 47.7% of the ADD(-s) metrics on the Occlusion Linemod dataset. These results show that our method is more effective than existing methods in pose estimation of large objects.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02154-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02154-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
An object’s six-degree-of-freedom (6DoF) pose information has great importance in various fields. Existing methods of pose estimation usually detect two-dimensional (2D)-three-dimensional (3D) feature point pairs, and directly estimates the pose information through Perspective-n-Point (PnP) algorithms. However, this approach ignores the spatial association between pixels, making it difficult to obtain high-precision results. In order to apply pose estimation based on deep learning methods to real-world scenarios, we hope to design a method that is robust enough in more complex scenarios. Therefore, we introduce a method for 3D object pose estimation from color images based on farthest point sampling (FPS) and object 3D bounding box. This method detects the 2D projection of 3D feature points through a convolutional neural network, matches it with the 3D model of the object, and then uses the PnP algorithm to restore the feature point pair to the object pose. Due to the global nature of the bounding box, this approach can be considered effective even in partially occluded or complex environments. In addition, we propose a heatmap suppression method based on weighted coordinates to further improve the prediction accuracy of feature points and the accuracy of the PnP algorithm in solving the pose position. Compared with other algorithms, this method has higher accuracy and better robustness. Our method yielded 93.8% of the ADD(-s) metrics on the Linemod dataset and 47.7% of the ADD(-s) metrics on the Occlusion Linemod dataset. These results show that our method is more effective than existing methods in pose estimation of large objects.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).