Minghe Zhang, Dongtao Wang, Zibin Wu, Xiaozu Zhang, Fuan Hua, Bo Zhang, Lai Chen, Xiaojun Zhou, Xiaocun Chen, Hiromi Nagaumi
{"title":"高压压铸 AlSi9MgMnZn 合金中的短时时效硬化行为","authors":"Minghe Zhang, Dongtao Wang, Zibin Wu, Xiaozu Zhang, Fuan Hua, Bo Zhang, Lai Chen, Xiaojun Zhou, Xiaocun Chen, Hiromi Nagaumi","doi":"10.1016/j.mtcomm.2024.110311","DOIUrl":null,"url":null,"abstract":"Short-time aging is an effective industrial technique for enhancing the mechanical properties of high pressure die cast (HPDC) aluminum alloy components. However, the evolution of precipitation behavior during short-time aging of HPDC alloys remains unclear. In this study, the short-time aging behavior of HPDC AlSi9MgMnZn alloy was investigated. The results show that the AlSi9MgMnZn alloy exhibits effective aging-hardening, with an increment in hardness of approximately 30 HV through the optimal short-time aging treatment (aged at 180 °C for 120 minutes). Higher aging temperatures led to reduced peak hardness and rapid over-aging above 220 °C. The microstructure observation indicates that the peak short-time aging promotes the simultaneous precipitation of β″ precipitates, GP zones and nano Si phases. The contribution of different strengthening mechanisms to hardness was estimated, implying that the coexistence of β″ precipitates and GP zones can provide a positive contribution to aging-hardening during short-time aging. Moreover, as the aging temperature increases, the appearance of β′ precipitates reduces the strengthening effect, leading to a decrease in hardness.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"42 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The aging-hardening behavior of short-time in high pressure die casting AlSi9MgMnZn alloy\",\"authors\":\"Minghe Zhang, Dongtao Wang, Zibin Wu, Xiaozu Zhang, Fuan Hua, Bo Zhang, Lai Chen, Xiaojun Zhou, Xiaocun Chen, Hiromi Nagaumi\",\"doi\":\"10.1016/j.mtcomm.2024.110311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-time aging is an effective industrial technique for enhancing the mechanical properties of high pressure die cast (HPDC) aluminum alloy components. However, the evolution of precipitation behavior during short-time aging of HPDC alloys remains unclear. In this study, the short-time aging behavior of HPDC AlSi9MgMnZn alloy was investigated. The results show that the AlSi9MgMnZn alloy exhibits effective aging-hardening, with an increment in hardness of approximately 30 HV through the optimal short-time aging treatment (aged at 180 °C for 120 minutes). Higher aging temperatures led to reduced peak hardness and rapid over-aging above 220 °C. The microstructure observation indicates that the peak short-time aging promotes the simultaneous precipitation of β″ precipitates, GP zones and nano Si phases. The contribution of different strengthening mechanisms to hardness was estimated, implying that the coexistence of β″ precipitates and GP zones can provide a positive contribution to aging-hardening during short-time aging. Moreover, as the aging temperature increases, the appearance of β′ precipitates reduces the strengthening effect, leading to a decrease in hardness.\",\"PeriodicalId\":18477,\"journal\":{\"name\":\"Materials Today Communications\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtcomm.2024.110311\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110311","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
短时时效是提高高压压铸(HPDC)铝合金部件机械性能的有效工业技术。然而,HPDC 合金在短时时效过程中的析出行为演变仍不清楚。本研究对高压压铸铝硅酸盐-9镁锰锌合金的短时时效行为进行了研究。结果表明,AlSi9MgMnZn 合金表现出有效的时效硬化,通过最佳短时时效处理(在 180 °C 下时效 120 分钟),硬度提高了约 30 HV。更高的时效温度会导致峰值硬度降低,并在 220 °C 以上快速过时效。微观结构观察表明,峰值短时间老化促进了β″析出物、GP区和纳米硅相的同时析出。对不同强化机制对硬度的贡献进行了估算,结果表明,β″析出物和 GP 区的共存可对短时间老化过程中的老化硬化起到积极作用。此外,随着时效温度的升高,β′析出物的出现会降低强化效果,导致硬度下降。
The aging-hardening behavior of short-time in high pressure die casting AlSi9MgMnZn alloy
Short-time aging is an effective industrial technique for enhancing the mechanical properties of high pressure die cast (HPDC) aluminum alloy components. However, the evolution of precipitation behavior during short-time aging of HPDC alloys remains unclear. In this study, the short-time aging behavior of HPDC AlSi9MgMnZn alloy was investigated. The results show that the AlSi9MgMnZn alloy exhibits effective aging-hardening, with an increment in hardness of approximately 30 HV through the optimal short-time aging treatment (aged at 180 °C for 120 minutes). Higher aging temperatures led to reduced peak hardness and rapid over-aging above 220 °C. The microstructure observation indicates that the peak short-time aging promotes the simultaneous precipitation of β″ precipitates, GP zones and nano Si phases. The contribution of different strengthening mechanisms to hardness was estimated, implying that the coexistence of β″ precipitates and GP zones can provide a positive contribution to aging-hardening during short-time aging. Moreover, as the aging temperature increases, the appearance of β′ precipitates reduces the strengthening effect, leading to a decrease in hardness.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.