有机氧化还原阴离子在质子交换膜上的迁移诱导交叉

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-09-09 DOI:10.1039/D4SE00682H
Penghui Ding, Mikhail Vagin, Mohammad Javad Jafari, Aleksandar Y. Mehandzhiyski, Viktor Gueskine, Tobias Abrahamsson, Igor Zozoulenko, Thomas Ederth and Reverant Crispin
{"title":"有机氧化还原阴离子在质子交换膜上的迁移诱导交叉","authors":"Penghui Ding, Mikhail Vagin, Mohammad Javad Jafari, Aleksandar Y. Mehandzhiyski, Viktor Gueskine, Tobias Abrahamsson, Igor Zozoulenko, Thomas Ederth and Reverant Crispin","doi":"10.1039/D4SE00682H","DOIUrl":null,"url":null,"abstract":"<p >The two-electron oxygen reduction reaction (ORR), powered by affordable renewable energy, presents a more promising and sustainable approach to hydrogen peroxide production than traditional methods. In this study, we introduce a membrane electrolyzer for ORR-to-H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) acts as the cathode that aids the oxygen reduction reaction through a two-electron pathway to produce H<small><sub>2</sub></small>O<small><sub>2</sub></small>. At the anode, we employed the oxidation of a model organic molecule, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate (tiron). This catalyst-free anode process, as an alternative to the sluggish water oxidation reaction commonly used in classical electrolyzers, reduces voltage loss to release protons, cross the membrane, and feed the ORR at the cathode. Our study investigated the often-neglected issue of organic crossover during electrolyzer operation and its significant impact on transport behavior. This research paves the way for the development of crossover-free flow cells, extending the realm of electrochemical devices based on the electrolyte fed and the membrane.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 4882-4892"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/se/d4se00682h?page=search","citationCount":"0","resultStr":"{\"title\":\"Migration-mitigated crossover of organic redox anions across a proton-exchange membrane†\",\"authors\":\"Penghui Ding, Mikhail Vagin, Mohammad Javad Jafari, Aleksandar Y. Mehandzhiyski, Viktor Gueskine, Tobias Abrahamsson, Igor Zozoulenko, Thomas Ederth and Reverant Crispin\",\"doi\":\"10.1039/D4SE00682H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The two-electron oxygen reduction reaction (ORR), powered by affordable renewable energy, presents a more promising and sustainable approach to hydrogen peroxide production than traditional methods. In this study, we introduce a membrane electrolyzer for ORR-to-H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) acts as the cathode that aids the oxygen reduction reaction through a two-electron pathway to produce H<small><sub>2</sub></small>O<small><sub>2</sub></small>. At the anode, we employed the oxidation of a model organic molecule, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate (tiron). This catalyst-free anode process, as an alternative to the sluggish water oxidation reaction commonly used in classical electrolyzers, reduces voltage loss to release protons, cross the membrane, and feed the ORR at the cathode. Our study investigated the often-neglected issue of organic crossover during electrolyzer operation and its significant impact on transport behavior. This research paves the way for the development of crossover-free flow cells, extending the realm of electrochemical devices based on the electrolyte fed and the membrane.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 20\",\"pages\":\" 4882-4892\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/se/d4se00682h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00682h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00682h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统方法相比,以负担得起的可再生能源为动力的双电子氧还原反应(ORR)是一种更有前景、更可持续的过氧化氢生产方法。本文介绍了一种将 ORR 转化为过氧化氢的膜电解器。导电聚合物聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)作为阴极,通过双电子途径帮助氧还原反应生成 H2O2。在阳极,我们采用了一种示范有机分子--4,5-二羟基-1,3-苯二磺酸二钠盐一水合物(铁)--的氧化反应。这种无催化剂阳极过程可替代传统电解槽中常用的缓慢的水氧化反应,减少电压损失,释放质子,穿过膜,并为阴极的 ORR 提供能量。我们的研究调查了电解槽运行过程中经常被忽视的有机物交叉问题及其对传输行为的重大影响。这项研究将有助于开发无交叉流动电池,从而扩展基于电解质馈入和膜的电化学设备领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Migration-mitigated crossover of organic redox anions across a proton-exchange membrane†

The two-electron oxygen reduction reaction (ORR), powered by affordable renewable energy, presents a more promising and sustainable approach to hydrogen peroxide production than traditional methods. In this study, we introduce a membrane electrolyzer for ORR-to-H2O2 generation. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) acts as the cathode that aids the oxygen reduction reaction through a two-electron pathway to produce H2O2. At the anode, we employed the oxidation of a model organic molecule, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate (tiron). This catalyst-free anode process, as an alternative to the sluggish water oxidation reaction commonly used in classical electrolyzers, reduces voltage loss to release protons, cross the membrane, and feed the ORR at the cathode. Our study investigated the often-neglected issue of organic crossover during electrolyzer operation and its significant impact on transport behavior. This research paves the way for the development of crossover-free flow cells, extending the realm of electrochemical devices based on the electrolyte fed and the membrane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Back cover Recent advances and opportunities in perovskite-based triple-junction tandem solar cells Enhanced thermoelectric properties of Cu1.8S via the introduction of ZnS nanostructures† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1