用于体内能量采集的空心微腔酶燃料电池

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-09-10 DOI:10.1016/j.xcrp.2024.102203
Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier
{"title":"用于体内能量采集的空心微腔酶燃料电池","authors":"Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier","doi":"10.1016/j.xcrp.2024.102203","DOIUrl":null,"url":null,"abstract":"<p>Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful <em>in vivo</em> implantation of a glucose/O<sub>2</sub> EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term <em>in vitro</em> bioelectrocatalytic storage stability of &gt;25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm<sup>−2</sup>, respectively, and high storage stability of ∼80% after 19 days. The maximum <em>in vivo</em> performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hollow microcavity enzymatic fuel cell for in vivo energy harvesting\",\"authors\":\"Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier\",\"doi\":\"10.1016/j.xcrp.2024.102203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful <em>in vivo</em> implantation of a glucose/O<sub>2</sub> EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term <em>in vitro</em> bioelectrocatalytic storage stability of &gt;25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm<sup>−2</sup>, respectively, and high storage stability of ∼80% after 19 days. The maximum <em>in vivo</em> performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102203\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102203","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,酶燃料电池(EFCs)已成为可穿戴和植入式电子设备的一种前景广阔的动力源。本文报道了一种葡萄糖/O2 EFC,利用创新的 "空腔电极 "概念,成功地在体内植入超过 70 天,以解决生物催化剂的寿命和生物相容性问题。这种空心生物阳极在体外生物电催化存储方面的长期稳定性为 25 天。基于降压纸的中空 EFC 显示出极具吸引力的最大电压和功率输出(分别为 0.62 V 和 0.79 mW cm-2),以及 19 天后高达 80% 的存储稳定性。体内的最大性能输出为 0.34 ± 0.05 V 和 38.7 ± 4.7 μW。在 Sprague-Dawley 大鼠体内使用 74 天后,空心 EFC 继续保持稳定的 0.59 V 电压。尸检结果显示没有排斥迹象,证明了其有效的生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hollow microcavity enzymatic fuel cell for in vivo energy harvesting

Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful in vivo implantation of a glucose/O2 EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term in vitro bioelectrocatalytic storage stability of >25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm−2, respectively, and high storage stability of ∼80% after 19 days. The maximum in vivo performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1