{"title":"基于联合特征对齐的无监督域自适应轴承故障诊断方法","authors":"Feng Xiaoliang, Zhang Zhiwei, Zhao Aiming","doi":"10.1177/09544062241274178","DOIUrl":null,"url":null,"abstract":"In this paper, the issue of cross-condition fault diagnosis of bearing is studied. During actual operation, the conditions of bearing vary due to changes in factors such as rotation speed and load, and the data distribution between different working conditions varies. Deep learning models that perform well in one condition are not ideal when applied to another condition directly. To address this problem, a novel unsupervised domain adaptation fault diagnosis method based on joint feature alignment is proposed in this paper. 1D-CNN is used as a weight-shared feature extractor to extract the features from both the source and target domains. The discrepancies in marginal and conditional distributions between the source and target domains are comprehensively considered by multi-layer multi-bandwidth Cauchy kernel maximum mean discrepancy (MB-CMMD) and mutual information (MI). The domain drift is reduced by aligning the feature representations of source and target domains. The network after feature alignment demonstrates a notable enhancement in the diagnostic accuracy of unlabeled samples within the target domain. The experimental results demonstrate that, in comparison to other domain adaptation approaches, The proposed approach can significantly enhance the accuracy of fault diagnosis while realizing feature alignment.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised domain adaptation bearing fault diagnosis method based on joint feature alignment\",\"authors\":\"Feng Xiaoliang, Zhang Zhiwei, Zhao Aiming\",\"doi\":\"10.1177/09544062241274178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the issue of cross-condition fault diagnosis of bearing is studied. During actual operation, the conditions of bearing vary due to changes in factors such as rotation speed and load, and the data distribution between different working conditions varies. Deep learning models that perform well in one condition are not ideal when applied to another condition directly. To address this problem, a novel unsupervised domain adaptation fault diagnosis method based on joint feature alignment is proposed in this paper. 1D-CNN is used as a weight-shared feature extractor to extract the features from both the source and target domains. The discrepancies in marginal and conditional distributions between the source and target domains are comprehensively considered by multi-layer multi-bandwidth Cauchy kernel maximum mean discrepancy (MB-CMMD) and mutual information (MI). The domain drift is reduced by aligning the feature representations of source and target domains. The network after feature alignment demonstrates a notable enhancement in the diagnostic accuracy of unlabeled samples within the target domain. The experimental results demonstrate that, in comparison to other domain adaptation approaches, The proposed approach can significantly enhance the accuracy of fault diagnosis while realizing feature alignment.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241274178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241274178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Unsupervised domain adaptation bearing fault diagnosis method based on joint feature alignment
In this paper, the issue of cross-condition fault diagnosis of bearing is studied. During actual operation, the conditions of bearing vary due to changes in factors such as rotation speed and load, and the data distribution between different working conditions varies. Deep learning models that perform well in one condition are not ideal when applied to another condition directly. To address this problem, a novel unsupervised domain adaptation fault diagnosis method based on joint feature alignment is proposed in this paper. 1D-CNN is used as a weight-shared feature extractor to extract the features from both the source and target domains. The discrepancies in marginal and conditional distributions between the source and target domains are comprehensively considered by multi-layer multi-bandwidth Cauchy kernel maximum mean discrepancy (MB-CMMD) and mutual information (MI). The domain drift is reduced by aligning the feature representations of source and target domains. The network after feature alignment demonstrates a notable enhancement in the diagnostic accuracy of unlabeled samples within the target domain. The experimental results demonstrate that, in comparison to other domain adaptation approaches, The proposed approach can significantly enhance the accuracy of fault diagnosis while realizing feature alignment.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.