水雪线以外最早的内太阳系行星碎片的堆积

Damanveer S. Grewal, Nicole X. Nie, Bidong Zhang, Andre Izidoro, Paul D. Asimow
{"title":"水雪线以外最早的内太阳系行星碎片的堆积","authors":"Damanveer S. Grewal, Nicole X. Nie, Bidong Zhang, Andre Izidoro, Paul D. Asimow","doi":"arxiv-2408.17032","DOIUrl":null,"url":null,"abstract":"How and where the first generation of inner solar system planetesimals formed\nremains poorly understood. Potential formation regions are the silicate\ncondensation line and water-snowline of the solar protoplanetary disk. Whether\nthe chemical compositions of these planetesimals align with accretion at the\nsilicate condensation line (water-free and reduced) or water-snowline\n(water-bearing and oxidized) is, however, unknown. Here we use Fe/Ni and Fe/Co\nratios of magmatic iron meteorites to quantify the oxidation states of the\nearliest planetesimals associated with non-carbonaceous (NC) and carbonaceous\n(CC) reservoirs, representing the inner and outer solar system, respectively.\nOur results show that the earliest NC planetesimals contained substantial\namounts of oxidized Fe in their mantles (3-19 wt% FeO). In turn, we argue that\nthis required the accretion of water-bearing materials into these NC\nplanetesimals. The presence of substantial quantities of moderately and highly\nvolatile elements in their parent cores is also inconsistent with their\naccretion at the silicate condensation line and favors instead their formation\nat or beyond the water-snowline. Similar oxidation states in the early-formed\nparent bodies of NC iron meteorites and those of NC achondrites and chondrites\nwith diverse accretion ages suggests that the formation of oxidized\nplanetesimals from water-bearing materials was widespread in the early history\nof the inner solar system.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accretion of the earliest inner solar system planetesimals beyond the water-snowline\",\"authors\":\"Damanveer S. Grewal, Nicole X. Nie, Bidong Zhang, Andre Izidoro, Paul D. Asimow\",\"doi\":\"arxiv-2408.17032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How and where the first generation of inner solar system planetesimals formed\\nremains poorly understood. Potential formation regions are the silicate\\ncondensation line and water-snowline of the solar protoplanetary disk. Whether\\nthe chemical compositions of these planetesimals align with accretion at the\\nsilicate condensation line (water-free and reduced) or water-snowline\\n(water-bearing and oxidized) is, however, unknown. Here we use Fe/Ni and Fe/Co\\nratios of magmatic iron meteorites to quantify the oxidation states of the\\nearliest planetesimals associated with non-carbonaceous (NC) and carbonaceous\\n(CC) reservoirs, representing the inner and outer solar system, respectively.\\nOur results show that the earliest NC planetesimals contained substantial\\namounts of oxidized Fe in their mantles (3-19 wt% FeO). In turn, we argue that\\nthis required the accretion of water-bearing materials into these NC\\nplanetesimals. The presence of substantial quantities of moderately and highly\\nvolatile elements in their parent cores is also inconsistent with their\\naccretion at the silicate condensation line and favors instead their formation\\nat or beyond the water-snowline. Similar oxidation states in the early-formed\\nparent bodies of NC iron meteorites and those of NC achondrites and chondrites\\nwith diverse accretion ages suggests that the formation of oxidized\\nplanetesimals from water-bearing materials was widespread in the early history\\nof the inner solar system.\",\"PeriodicalId\":501209,\"journal\":{\"name\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们对第一代太阳系内行星是如何形成的以及在哪里形成的仍然知之甚少。潜在的形成区域是太阳原行星盘的硅酸盐凝结线和水雪线。然而,这些行星小体的化学成分是否与硅酸盐凝结线(无水和还原)或水雪线(含水和氧化)的吸积相一致还不得而知。在这里,我们利用岩浆铁陨石的铁/镍和铁/硼比来量化分别代表内太阳系和外太阳系的与非碳质(NC)和碳质(CC)储层相关的最早的类星体的氧化态。我们的研究结果表明,最早的数控类星体的外壳中含有大量氧化铁(3-19 wt% FeO),而这需要含水物质向这些数控类星体增殖。它们的母核中存在大量的中度和高度挥发性元素,这也与它们在硅酸盐凝结线处形成的情况不符,而更倾向于它们是在水雪线或水雪线之外形成的。数控铁陨石早期形成的母体以及具有不同吸积年龄的数控隐陨石和软陨石母体中的氧化态相似,这表明在内层太阳系的早期历史中,由含水物质形成氧化行星的现象十分普遍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accretion of the earliest inner solar system planetesimals beyond the water-snowline
How and where the first generation of inner solar system planetesimals formed remains poorly understood. Potential formation regions are the silicate condensation line and water-snowline of the solar protoplanetary disk. Whether the chemical compositions of these planetesimals align with accretion at the silicate condensation line (water-free and reduced) or water-snowline (water-bearing and oxidized) is, however, unknown. Here we use Fe/Ni and Fe/Co ratios of magmatic iron meteorites to quantify the oxidation states of the earliest planetesimals associated with non-carbonaceous (NC) and carbonaceous (CC) reservoirs, representing the inner and outer solar system, respectively. Our results show that the earliest NC planetesimals contained substantial amounts of oxidized Fe in their mantles (3-19 wt% FeO). In turn, we argue that this required the accretion of water-bearing materials into these NC planetesimals. The presence of substantial quantities of moderately and highly volatile elements in their parent cores is also inconsistent with their accretion at the silicate condensation line and favors instead their formation at or beyond the water-snowline. Similar oxidation states in the early-formed parent bodies of NC iron meteorites and those of NC achondrites and chondrites with diverse accretion ages suggests that the formation of oxidized planetesimals from water-bearing materials was widespread in the early history of the inner solar system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the Possible Causes of the Transit Timing Variation for TrES-2b in TESS Era Drifts of the sub-stellar points of the TRAPPIST-1 planets Updated forecast for TRAPPIST-1 times of transit for all seven exoplanets incorporating JWST data Thermal Evolution of Lava Planets Quartz Clouds in the Dayside Atmosphere of the Quintessential Hot Jupiter HD 189733 b
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1