{"title":"用于骨工程的生物复合材料海藻酸钠-PVP-生物玻璃珠的合成与表征","authors":"Amel Mohamed Abouelnaga, Amany M. El Nahrawy","doi":"10.1007/s12633-024-03116-3","DOIUrl":null,"url":null,"abstract":"<div><p>Development an advanced drug delivery biocomposite beads using polyvinylpyrrolidone, Sodium Alginate, and bioglass as a carrier for 20% amoxicillin drug. The two beads’ samples were formed by the sol–gel process combined with the dropwise method, through exposure to simulated body fluid (SBF). The obtained beads were assessed by XRD, SEM, and FT-IR confirming the in vitro test. The spectroscopic results confirm their successful development of the apatite layer. The SEM shows that the bio-beads are microsphere structures with a diameter from 405 nm to 4.700 μm. UV/visible diffuse reflectance analysis assessed the impact of loading amoxicillin on optical properties and determined the energy gap (Eg) for the composites, yielding values of 1.25 and 2.59 eV for the direct and indirect transitions. The antimicrobial efficiency is evaluated by employing the agar diffusion method with a range of pathogenic microorganisms. <i>Staphylococcus aureus</i>, <i>Staphylococcus haemolyticus</i>, and <i>Enterococcus faecalis</i> are used as senates for the + ve bacteria, whereas <i>Klebsiella pneumoniae</i> and <i>Escherichia coli</i> as -ve bacteria. The SBF tests confirm apatite covering on the bead surfaces, representative of effective bioactivity. Antimicrobial results establish enhanced performance, signifying the two bio-bead samples as promising applicants for bone tissue engineering.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 16","pages":"5961 - 5975"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Biocomposite Sodium Alginate-PVP-Bioglass Beads for Bone Engineering\",\"authors\":\"Amel Mohamed Abouelnaga, Amany M. El Nahrawy\",\"doi\":\"10.1007/s12633-024-03116-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Development an advanced drug delivery biocomposite beads using polyvinylpyrrolidone, Sodium Alginate, and bioglass as a carrier for 20% amoxicillin drug. The two beads’ samples were formed by the sol–gel process combined with the dropwise method, through exposure to simulated body fluid (SBF). The obtained beads were assessed by XRD, SEM, and FT-IR confirming the in vitro test. The spectroscopic results confirm their successful development of the apatite layer. The SEM shows that the bio-beads are microsphere structures with a diameter from 405 nm to 4.700 μm. UV/visible diffuse reflectance analysis assessed the impact of loading amoxicillin on optical properties and determined the energy gap (Eg) for the composites, yielding values of 1.25 and 2.59 eV for the direct and indirect transitions. The antimicrobial efficiency is evaluated by employing the agar diffusion method with a range of pathogenic microorganisms. <i>Staphylococcus aureus</i>, <i>Staphylococcus haemolyticus</i>, and <i>Enterococcus faecalis</i> are used as senates for the + ve bacteria, whereas <i>Klebsiella pneumoniae</i> and <i>Escherichia coli</i> as -ve bacteria. The SBF tests confirm apatite covering on the bead surfaces, representative of effective bioactivity. Antimicrobial results establish enhanced performance, signifying the two bio-bead samples as promising applicants for bone tissue engineering.</p></div>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":\"16 16\",\"pages\":\"5961 - 5975\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12633-024-03116-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03116-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Synthesis and Characterization of Biocomposite Sodium Alginate-PVP-Bioglass Beads for Bone Engineering
Development an advanced drug delivery biocomposite beads using polyvinylpyrrolidone, Sodium Alginate, and bioglass as a carrier for 20% amoxicillin drug. The two beads’ samples were formed by the sol–gel process combined with the dropwise method, through exposure to simulated body fluid (SBF). The obtained beads were assessed by XRD, SEM, and FT-IR confirming the in vitro test. The spectroscopic results confirm their successful development of the apatite layer. The SEM shows that the bio-beads are microsphere structures with a diameter from 405 nm to 4.700 μm. UV/visible diffuse reflectance analysis assessed the impact of loading amoxicillin on optical properties and determined the energy gap (Eg) for the composites, yielding values of 1.25 and 2.59 eV for the direct and indirect transitions. The antimicrobial efficiency is evaluated by employing the agar diffusion method with a range of pathogenic microorganisms. Staphylococcus aureus, Staphylococcus haemolyticus, and Enterococcus faecalis are used as senates for the + ve bacteria, whereas Klebsiella pneumoniae and Escherichia coli as -ve bacteria. The SBF tests confirm apatite covering on the bead surfaces, representative of effective bioactivity. Antimicrobial results establish enhanced performance, signifying the two bio-bead samples as promising applicants for bone tissue engineering.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.