多载流子变磁体 CrSb 中的高迁移率电荷传输

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-08-29 DOI:10.1103/physrevmaterials.8.084412
Takahiro Urata, Wataru Hattori, Hiroshi Ikuta
{"title":"多载流子变磁体 CrSb 中的高迁移率电荷传输","authors":"Takahiro Urata, Wataru Hattori, Hiroshi Ikuta","doi":"10.1103/physrevmaterials.8.084412","DOIUrl":null,"url":null,"abstract":"A newly identified magnetic phase called altermagnet is being actively studied because of its unprecedented spin-dependent phenomena. Among the candidate materials, CrSb has a particularly high ordering temperature and a large spin-splitting energy, but its transport properties have remained unexplored. In this study, we report the magnetotransport properties of CrSb measured on single crystals. We found that the Hall resistivity shows a nonlinear dependence on the magnetic field at low temperatures. From symmetry-based considerations, however, this behavior cannot be attributed to an anomalous Hall effect, but to a multicarrier effect. A multicarrier fitting to the in-plane conductivity tensor revealed the presence of carriers with high mobility in CrSb, which is an advantage for efficient spin current generation.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High mobility charge transport in a multicarrier altermagnet CrSb\",\"authors\":\"Takahiro Urata, Wataru Hattori, Hiroshi Ikuta\",\"doi\":\"10.1103/physrevmaterials.8.084412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A newly identified magnetic phase called altermagnet is being actively studied because of its unprecedented spin-dependent phenomena. Among the candidate materials, CrSb has a particularly high ordering temperature and a large spin-splitting energy, but its transport properties have remained unexplored. In this study, we report the magnetotransport properties of CrSb measured on single crystals. We found that the Hall resistivity shows a nonlinear dependence on the magnetic field at low temperatures. From symmetry-based considerations, however, this behavior cannot be attributed to an anomalous Hall effect, but to a multicarrier effect. A multicarrier fitting to the in-plane conductivity tensor revealed the presence of carriers with high mobility in CrSb, which is an advantage for efficient spin current generation.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084412\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084412","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于其前所未有的自旋依赖现象,一种新发现的磁性相--"变磁体"(altermagnet)正被积极研究。在候选材料中,CrSb 具有特别高的有序温度和较大的自旋分裂能,但其传输特性仍未得到探索。在本研究中,我们报告了在单晶体上测量到的铬锑的磁传输特性。我们发现,霍尔电阻率在低温下与磁场呈非线性依赖关系。然而,基于对称性的考虑,这种行为不能归因于异常霍尔效应,而应归因于多载波效应。对平面内电导张量进行多载流子拟合后发现,CrSb 中存在高迁移率的载流子,这是高效产生自旋电流的一个优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High mobility charge transport in a multicarrier altermagnet CrSb
A newly identified magnetic phase called altermagnet is being actively studied because of its unprecedented spin-dependent phenomena. Among the candidate materials, CrSb has a particularly high ordering temperature and a large spin-splitting energy, but its transport properties have remained unexplored. In this study, we report the magnetotransport properties of CrSb measured on single crystals. We found that the Hall resistivity shows a nonlinear dependence on the magnetic field at low temperatures. From symmetry-based considerations, however, this behavior cannot be attributed to an anomalous Hall effect, but to a multicarrier effect. A multicarrier fitting to the in-plane conductivity tensor revealed the presence of carriers with high mobility in CrSb, which is an advantage for efficient spin current generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1