三维拓扑绝缘体纳米结构的低能建模

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-08-28 DOI:10.1103/physrevmaterials.8.084204
Eduárd Zsurka, Cheng Wang, Julian Legendre, Daniele Di Miceli, Llorenç Serra, Detlev Grützmacher, Thomas L. Schmidt, Philipp Rüßmann, Kristof Moors
{"title":"三维拓扑绝缘体纳米结构的低能建模","authors":"Eduárd Zsurka, Cheng Wang, Julian Legendre, Daniele Di Miceli, Llorenç Serra, Detlev Grützmacher, Thomas L. Schmidt, Philipp Rüßmann, Kristof Moors","doi":"10.1103/physrevmaterials.8.084204","DOIUrl":null,"url":null,"abstract":"We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">k</mi><mo>·</mo><mi mathvariant=\"normal\">p</mi></mrow></math> bulk model Hamiltonian for the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math> family of topological insulators, we derive new parameter sets for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow><mo>,</mo><mo> </mo><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>3</mn></msub><mo>,</mo></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Sb</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>3</mn></msub></mrow></math>. We consider a fitting strategy applied to <i>ab initio</i> band structures around the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Γ</mi></math> point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from <i>ab initio</i> calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-energy modeling of three-dimensional topological insulator nanostructures\",\"authors\":\"Eduárd Zsurka, Cheng Wang, Julian Legendre, Daniele Di Miceli, Llorenç Serra, Detlev Grützmacher, Thomas L. Schmidt, Philipp Rüßmann, Kristof Moors\",\"doi\":\"10.1103/physrevmaterials.8.084204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">k</mi><mo>·</mo><mi mathvariant=\\\"normal\\\">p</mi></mrow></math> bulk model Hamiltonian for the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math> family of topological insulators, we derive new parameter sets for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow><mo>,</mo><mo> </mo><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>3</mn></msub><mo>,</mo></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Sb</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>3</mn></msub></mrow></math>. We consider a fitting strategy applied to <i>ab initio</i> band structures around the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Γ</mi></math> point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from <i>ab initio</i> calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084204\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084204","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们为现实的三维拓扑绝缘体纳米结构开发了一种精确的纳米电子建模方法,并研究了它们的低能表面态谱。从通常认为的 Bi2Se3 系列拓扑绝缘体的四带 k-p 体模型哈密顿开始,我们得出了 Bi2Se3、Bi2Te3 和 Sb2Te3 的新参数集。我们考虑将拟合策略应用于 Γ 点附近的 ab initio 带状结构,以确保定量准确地描述低能体态和表面态,同时避免在较高的时刻出现非物理的低能态,而这是通常认为的微扰方法所无法保证的。我们分析了拓扑表面态的低能谱中由于能带各向异性和电子-空穴不对称而产生的效应,这些效应产生的狄拉克表面态自然地局域在不同的侧刻面上。在薄膜极限,当表面态通过体层发生杂化时,我们采用薄膜模型,并通过原子序数计算推导出厚度相关的模型参数,这些参数与实验解析的能带结构显示出良好的一致性,而不像体层模型在这一机制中忽略了相关的多体效应。我们的多功能建模方法为精确模拟基于拓扑材料的现实纳米电子器件提供了一个可靠的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-energy modeling of three-dimensional topological insulator nanostructures
We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi2Se3 family of topological insulators, we derive new parameter sets for Bi2Se3, Bi2Te3, and Sb2Te3. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1